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Preface

After 22 years since the formation of American Concrete Institute (ACI) 
Committee 440 and almost half a century of research endeavors, fiber-
reinforced polymer (FRP) reinforcement for concrete members is about to 
see full market acceptance and implementation. ACI Committee 440 has 
recently started the effort to create a mandatory-language design code that, 
in addition to other ACI reports, guides, and specifications, and ASTM test 
methods and material specifications, will be the instrument for this takeoff 
not just in North America but all over the world. For practitioners and 
owners, the primary motivation for the use of FRP is the need to improve 
the durability of concrete structures.

This book is mainly intended for practitioners and focuses on ACI tech-
nical literature covering the fundamentals of performance and design of 
concrete members with FRP reinforcement and reinforcement detailing. 
Graduate students and researchers can use it as a valuable resource to guide 
their studies and creative work. The book covers only internal, nonpre-
stressed FRP reinforcement and excludes prestressing and near-surface-
mounted reinforcement applications. It is assumed that the reader already 
has familiarity with concrete as a material and reinforced concrete as a 
construction technology (i.e., fabrication, analysis, and design). The book 
is divided into parts that follow the typical approach to design of conven-
tional reinforced concrete.

PART 1—MATERIALS AND TEST METHODS

Chapter 1 deals with the historical background and the state of the art 
in research worldwide. Reference is made to existing design guides and 
significant institutional-type literature. Some considerations are provided 
on limitations in use that are primarily due to a lack of experience rather 
than engineering. The chapter closes with an illustration of relevant com-
pleted projects.
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Chapter 2 informs the reader about the characteristics and peculiarities 
of FRP constituents. Following the spirit of the book, the chapter is limited 
to the items of primary interest to a designer/practitioner and reference is 
made to more exhaustive literature on the subject. Attention is devoted 
to issues regarding testing and quality control as needed for the execu-
tion of field projects. Different forms of internal FRP reinforcement are 
mentioned.

Chapter 3 describes available test methods necessary for the determi-
nation of the mechanical and physical properties of FRP bars with refer-
ence made to more exhaustive literature and available American Society 
for Testing and Materials (ASTM International) standards. Attention is 
devoted to issues regarding testing and quality control as needed for the 
execution of field projects.

PART 2—ANALYSIS AND DESIGN

Chapter 4 covers flexural members and provides a detailed explanation 
of flexural and shear behavior. Types of members covered are slabs (one-
way and two-way), footings, and beams. Emphasis is placed on structural 
reliability and the derivation of the strength-reduction factors. The exam-
ples shown in this chapter are only provided for clarification, while more 
exhaustive design examples are given in Part 3. A section on torsion com-
pletes the chapter.

Chapter 5 covers members subject to combined axial force and bending 
moment. This chapter lays the foundation for the acceptance of FRP rein-
forcement in column-type members, a topic presently ignored by existing 
design guides. Similarly to Chapter 4, the reader is referred to Part 3 for 
an exhaustive design example. The chapter covers rectangular and circular 
cross-section columns and shear walls.

PART 3—DESIGN EXAMPLES

Taking a two-story medical facility building as the case study, Part 3 deals 
with the design of slabs on the second floor (i.e., Chapter 6 for one-way and 
Chapter 8 for two-way), internal beams (i.e., Chapter 7), column of the first 
story (i.e., Chapter 9), and isolated column footing (i.e., Chapter 10). It was 
decided to show the practical implications of design on the key members 
of a building through the use of Mathcad©. With this powerful computa-
tional software, mathematical expressions are created and manipulated in 
the same graphical format as they are presented so that the reader can easily 
comprehend the design flow and use the solved examples as a template for 
real projects.
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The idea of this book started many years ago with university students 
and industry colleagues with the goal of facilitating the implementation of 
FRP reinforcement in construction and disseminating the experience gath-
ered in the laboratory and numerous field applications. Among the many 
individuals who directly and indirectly contributed, we must single out the 
following for a special thank you: Doug Gremel, Fabio Matta, and Renato 
Parretti.
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Chapter 1

Introduction

1.1  BACKGROUND

Plain concrete is strong in compression, but weak in tension. For this reason, 
it was originally used for simple, massive structures, such as foundations, 
bridge piers, and heavy walls. Over the second half of the nineteenth 
century, designers and builders developed the technique of embedding steel 
bars into concrete members in order to provide additional capacity to resist 
tensile stresses. This pioneering effort has resulted in what we now call 
reinforced concrete (RC).

Until a few decades ago, steel bars were practically the only option for 
reinforcement of concrete structures. The combination of steel bars and 
concrete is mutually beneficial. Steel bars provide the capacity to resist ten-
sile stresses. Concrete resists compression well and provides a high degree 
of protection to the reinforcing steel against corrosion as a result of its 
alkalinity.

Combinations of chlorides (depassivation of steel) and CO2 (carbon-
ation of concrete) in presence of moisture produce corrosion of the steel 
reinforcement. This phenomenon causes the deterioration of the concrete 
and, ultimately, the loss of the usability of the structure [1]. Over the 
second half of the 1900s, the deterioration of several RC structures due 
to the chloride-ion induced corrosion of the internal steel reinforcement 
became a major concern. Various solutions were investigated for applica-
tions in aggressive corrosion environments [2]. These included galvanized 
coatings, electrostatic spray fusion-bonded (powder resin) coatings, and 
polymer-impregnated concrete epoxy coatings. Eventually, fiber-reinforced 
polymer (FRP) reinforcing bars were considered as an alternative to steel 
bars [3,4].

The FRP reinforcing bar became a commercially available viable solution 
as internal reinforcement for concrete structures in the late 1980s, when 
the market demand for electromagnetic-transparent (therefore nonferrous) 
reinforcing bars increased.
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1.2  FRP REINFORCEMENT

FRP composites are the latest version of the very old concept of making 
a better material by combining two different ones. They consist of a rein-
forcing phase (fibers) embedded into a matrix (polymer). The individual 
components, fibers and polymer, do not serve the function of structural 
materials by themselves but do when put together. The fibers provide 
strength and stiffness to the composite and carry most of the applied load 
[3] while the resin encapsulates them, thus transferring stresses and provid-
ing protection.

After World War II, the need to satisfy aerospace industry demand not 
met by traditional materials induced researchers and scientists to look 
for new solutions. The answer was found in developing new material sys-
tems by embedding strong fibers into a polymeric matrix. The so-called 
FRP composite materials offered several advantages with respect to tra-
ditional metallic materials. Their innovative properties, such as high ten-
sile strength and modulus, lightness, corrosion resistance, electromagnetic 
transparency, and the possibility to “engineer” their mechanical properties 
by changing constituent composition and fiber type and orientation, made 
FRP composites suitable for a number of applications in different industries 
[3,5]. The aerospace industry began to use FRP composites as lightweight 
material with superior strength and stiffness, which reduced the weight of 
aircraft structures. Later, other industries like naval, defense, and sporting 
goods started using FRP composites on an extensive basis [5].

FRP reinforcement for concrete structures has been under development 
since the 1960s in the United States [6] and the 1970s in Europe [7] and 
Japan [8]. However, it was in the 1980s that the overall level of research, 
field demonstration, and commercialization became remarkable [9].

FRP reinforcing bars (rebars) are anisotropic. Strength and stiffness of 
the FRP rebar in the direction of the fibers are significantly affected by the 
types of fibers and the ratio of the volume of fiber to the overall volume of 
the FRP. The type of resin affects the failure mechanism and the fracture 
toughness of the composite. Other factors influencing the properties of FRP 
rebars are fiber orientation, rate of resin curing, and manufacturing process 
and its quality control [3,9–11].

Fibers commonly used to make FRP bars are glass, carbon, and aramid. 
Recently, continuous basalt fibers have become commercially available as 
an alternative to glass fibers. The matrix bonds and protects the fibers and 
allows the transfer of stresses from fiber to fiber through shear stresses [3]. 
Matrices are typically thermosetting resins such as epoxies, polyesters, and 
vinyl esters. Epoxy is the most common type of matrix material used with 
carbon fibers. Vinyl ester resins are generally coupled with glass fibers.

The techniques used to manufacture FRP rebars are pultrusion, braid-
ing, and weaving. The typical cross-sectional shape is solid and round, 
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but hollow and other shapes are available. Bars cannot be bent after resin 
curing: Bends must be incorporated during manufacturing. A bar surface 
deformation or texture, such as wound fibers, sand coatings, and sepa-
rately formed deformations, is induced so that mechanical bonding is devel-
oped between FRP rebars and concrete. The longitudinal tensile strength 
of FRP rebars is bar size dependent [11] due to a phenomenon known as 
“shear-lag.” The lower cost-to-performance advantage of glass over carbon 
fibers makes glass FRP (GFRP) rebars preferable in conventional concrete 
members. However, for special requirements, carbon FRP (CFRP) rebars 
may be the ideal choice.

Internal FRP reinforcements are also available in multidimensional 
shapes [10] with the most common being prefabricated, orthogonal, two-
dimensional grids. Multidimensional FRP reinforcements can also be fab-
ricated on-site by hand placement and tying of one-dimensional shapes [9].

To minimize uncertainty in their performance and specification, several 
standards development organizations have developed consensus-based test 
methods for the characterization of the short- and long-term mechani-
cal, thermomechanical, and durability properties of FRP reinforcements. 
The recommended test methods are based on the knowledge gained from 
research results and literature worldwide. The first document that intro-
duced test methods for FRP rebars was “Recommendation for Design and 
Construction of Concrete Structures Using Continuous Fiber Reinforcing 
Materials,” which was published in 1997 by the Japan Society for Civil 
Engineering (JSCE) [12]. ASTM International and the Organization for 
Standards (ISO) offer standardized test methods related to the use of FRP 
composites in structural engineering. Model test methods for FRP bars 
are recommended by the American Concrete Institute (ACI) in document 
440.3R, “Guide Test Methods for Fiber-Reinforced Polymers (FRPs) for 
Reinforcing or Strengthening Concrete and Masonry Structures” [13], 
effective since 2004. Testing procedures have also been developed by the 
Canadian Standards Association (CSA).

1.3  FRP REINFORCED CONCRETE

Over the past two decades, laboratory tests have demonstrated that FRP 
bars can be used successfully and practically as internal reinforcement in 
concrete structures. The role of industry/university cooperative research 
became key in transferring the use of internal FRP reinforcement for con-
crete from the laboratory to the field. To date, reinforcing bars made of FRP 
have gained acceptance as internal reinforcement in concrete structures.

The mechanical behavior of FRP rebars differs from the behavior of 
conventional steel rebars. FRP composites are anisotropic, linear, and 
elastic until failure and are characterized by high tensile strength only in 
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the direction of the fibers [14–17], with no yielding. A flexural concrete 
member reinforced with FRP rebars generally experiences extensive 
cracking and large deflections prior to failure, which is, typically, sudden 
and catastrophic. The shear strength and dowel action of FRP rebars as 
well as the bond performance are affected by the anisotropic behavior of 
the bars [3]. Furthermore, the behavior of FRP bars in compression is not 
as good as the one in tension. Due to the FRP anisotropic and nonho-
mogeneous nature, the compressive modulus is lower than the tensile one 
[15,18]. There is still little experience in the use of FRP reinforcement in 
compression members (columns) and for moment frames or zones where 
moment redistribution is required [19].

Several global activities have taken place to implement FRP rebars into 
design codes and guidelines since the 1980s. In the United States, the ini-
tiatives and vision of the National Science Foundation and the Federal 
Highway Administration promoted the development of this technology 
supporting research at different universities and research institutions [9]. 
In 1991, the ACI established Committee 440, ‘‘FRP Reinforcement.” The 
objective of the committee was to provide the construction industry with 
science-based design guidelines, construction specifications, and inspection 
and quality control recommendations related to the use of FRP rebars for 
concrete structures. In 2001, Committee 440 published the first version 
of the document “Guide for the Design and Construction of Structural 
Concrete Reinforced with FRP Bars” [20]. The availability of this docu-
ment further expedited the adoption of FRP rebars.

While the use of FRP reinforcement in buildings in the United States is 
within the jurisdiction of ACI, new bridges financed with federal funds have 
to be designed following the American Association of State Highway and 
Transportation Officials (AASHTO) load and resistance factor design (LRFD) 
bridge design specification. The lack of AASHTO limit-state-based specifica-
tions covering the design of FRP reinforced concrete bridge deck systems was 
the last barrier to sanction the acceptance of this innovative and already com-
petitive technology. In 2007, a task force led by researchers, consultants, and 
representatives from State Departments of Transportation and the US Federal 
Highway Administration developed LRFD design specifications written in 
mandatory language. While maintaining the AASHTO provisions for the def-
inition of loads, load factors, and limit states, the document covered specific 
material properties and detailing of FRP reinforcement, and defined applica-
ble design algorithms and resistance factors. The proposed guide, “AASHTO 
LRFD Bridge Design Guide Specifications for GFRP-Reinforced Concrete 
Bridge Decks and Traffic Railings,” was approved by the Subcommittee on 
Bridges and Structures in May 2008 and published in December 2009 [21].

In addition to FIB (Fédération Internationale du Béton) bulletin 40, 
“FRP Reinforcement in RC Structures,” published by the International 
Federation for Structural Concrete [22], some historical and well-known 
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guidelines specific to FRP-RC available around the world follow 
[12,13,20,21,23–25]:

Asia
•	 Japan

−− “Recommendation for Design and Construction of Concrete 
Structures Using Continuous Fiber Reinforced Materials” 
(2007), published by JSCE

Europe
•	 Italy

−− CNR-DT 203/2006 (2006), “Guide for the Design and 
Construction of Concrete Structures Reinforced with Fiber-
Reinforced Polymer Bars,” published by the Italian National 
Research Council (CNR)

•	 Norway
−− SINTEF Report STF22 A98741, “Modifications to NS3473 

When Using Fiber-Reinforced Plastic Reinforcement 2.24” 
(2002), published by the Norwegian Council for Building 
Standardization (NBR)

•	 United Kingdom
−− “Interim Guidance on the Design of Reinforced Concrete 

Structures Using Fiber Composite Reinforcement” (1999), 
published by the Institution of Structural Engineers

North America
•	 Canada

−− CAN/CSA-S806-12 (2002 and 2012), “Design and 
Construction of Building Structures with Fiber-Reinforced 
Polymers,” published by CSA

−− CAN/CSA-S807-10 (2010), “Specification for Fiber-
Reinforced Polymers,” published by CSA

−− CAN/CSA-S6-06 (2006) plus CAN/CSA S6S1-10 (2010 
Supplement), “Canadian Highway Bridge Design Code,” pub-
lished by CSA

•	 United States
−− ACI 440.1R (2001 and 2006), “Guide for the Design and 

Construction of Structural Concrete Reinforced with FRP 
Bars,” published by ACI

−− ACI 440.3R-04 (2004 and 2012), “Guide Test Methods 
for Fiber-Reinforced Polymers (FRPs) for Reinforcing or 
Strengthening Concrete Structures,” published by ACI

−− “AASHTO LRFD Bridge Design Guide Specifications 
for GFRP Reinforced Concrete Bridge Decks and Traffic 
Railings” (2009), published by the American Association of 
State Highway and Transportation Officials (AASHTO)
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1.4  ACCEPTANCE BY BUILDING OFFICIALS

1.4.1  Premise on code adoption

Standardization is the most rigorous consensus process used by public 
and professional agencies worldwide. It provides the widest input and 
highest overall quality assurance for a document. In the United States, 
the standardization process is approved by the American National 
Standards Institute (ANSI). Documents that go through this process are 
identified as standards. Standards are written in mandatory language and 
can be referenced by model codes, authorities having jurisdiction over 
local building codes, persons or agencies that provide specifications, or in 
legal documents such as project specifications. There are different types 
of standards:

•	 Design standards that are directed to the design professional, not the 
construction team

•	 Design specifications that are available for reference in legal docu-
ments other than building codes, such as federal government contracts

•	 Construction standards that are written to direct the producers, testing 
agencies, and construction teams rather than the design professional

•	 Construction specifications that are reference documents to be 
included as part of a contract between an owner and a contractor

•	 Material specifications that are reference documents to prescribe 
requirements for materials used in projects are written to the pro-
ducer, are incorporated by reference in contract documents, and may 
be incorporated by reference into construction specifications or into 
contract documents

•	 Test methods that prescribe means of testing for compliance of 
materials or construction methods that are proposed for or used in 
projects—written to the testing agency and may be incorporated by 
reference in material specifications, construction specifications, or 
contract documents

•	 Inspection services specifications that are reference documents writ-
ten as part of a contract between an owner and an inspection agency

•	 Testing services specifications that are reference documents written as 
part of a contract between an owner and a testing agency or between 
a contractor and a testing agency

For a design standard to become law it must be adopted by a model 
building code or by a regulatory agency. In the United States (and other 
parts of the world including the United Nations), the International Building 
Code (IBC) [26] part of the family of International Codes (I-Codes) is the 
predominant “model code” (adopted by all 50 states, Puerto Rico, and 
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the US Virgin Islands) and covers the design and construction of new 
buildings. For current and well-established materials systems and tech-
nologies (for example, reinforced concrete), IBC references other standard 
documents (in the case of the example and for design: ACI 318-11 [27]) 

de facto, making them part of the model code itself. Once IBC is adopted 
by a state or other legal jurisdiction, it becomes law and, with it, its ref-
erenced standards.

Based on the preceding (except the case when a standard is directly 
adopted by a jurisdiction), in order for any standard document to have legal 
status and thus be enforceable by a building official, it must be referenced 
directly by IBC or any of the other I-Codes. As of today, notwithstanding 
the availability of guides, test methods, and construction and materials 
specifications, neither IBC nor any of the I-Codes references FRP rein-
forcement for concrete, thus making it impossible for a building official to 
approve the use of FRP without special consideration.

1.4.2  The role of acceptance criteria from ICC-ES

Section 104.11 of IBC [26] (and equivalent ones in the other I-Codes) 
allows alternative materials by stating that “the provisions of this code are 
not intended to prevent the installation of any materials or to prohibit any 
design or method of construction not specifically prescribed by this code, 
provided that any such alternative has been approved…”.

More specifically, Section 104.11.1 of IBC states that a “research report” 
is the source of information on and the means for building officials’ approval 
for alternative materials: “Supporting data, where necessary to assist in the 
approval of materials or assemblies not specifically provided for use in this 
code, shall consist of valid Research Reports from approved sources.”

The existence of a set of protocols and provisions is therefore necessary 
in order to conduct the tests, the analysis of the results, the design, and the 
installation of the product on which to base the “research report.” To this 
end, ICC Evaluation Services (ICC-ES) develops in partnership with the 
proposers of new technology-specific documents called “acceptance criteria 
(AC)” for the purpose of issuing “evaluation (research) reports.” Once it is 
demonstrated that the product is manufactured under an approved quality 
control program, the research program outlined in the AC is conducted by 
a certified independent laboratory, its outcomes are evaluated by ICC-ES, 
and, assuming compliance, a research report is issued. Thus, the alternative 
material/technology now has official recognition.

Recently, ICC-ES has developed a new document: “AC454-Proposed 
Acceptance Criteria for Glass Fiber-Reinforced Polymer (GFRP) Bars for 
Internal Reinforcement of Concrete and Masonry Members” [28]. The pur-
pose of this AC is to establish requirements for GFRP bars to be recognized 
in an ICC-ES research report IBC and other I-Codes. Basis of recognition is 
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IBC Section 104.11. The reason for the development of this AC is to provide 
guidelines for the evaluation of an alternative reinforcement for concrete 
and masonry structures, where the codes do not provide requirements for 
testing and determination of physical and mechanical properties of this 
type of reinforcement product. AC454 applies to deformed GFRP bars used 
to reinforce concrete and masonry structural elements in cut lengths and 
bent shapes. Properties evaluated include performance under accelerated 
environmental exposures, performance under exposure to fire conditions, 
and structural design procedures.

A summary of tests required by AC454 [28] and their frequency is shown 
in Table 1.1. The test methods referenced are listed in Table 1.2 and a more 
detailed discussion of physical, mechanical, and durability properties that 
they intend to capture is offered in Chapters 2 and 3. In addition, AC454 
establishes minimum requirements for some of these properties. It should 
also be noted that AC454 adopts a clear distinction between nominal cross-
sectional area (and diameter) and the measured or “real” values. In fact, 
the nominal cross-sectional area and the nominal diameter of an equivalent 
FRP round solid bar are to be used for the purpose of classification and 
initial design (as the designer does not select a specific product). These two 
nominal values are to allow the designer to establish a relationship with 
steel reinforcing bars, thus facilitating initial design and dimensioning.

1.5  APPLICATIONS

FRP rebars are suitable alternatives to steel, epoxy-coated steel, and stainless 
steel bars in reinforced concrete applications if durability, electromagnetic 
transparency, or ease of demolition in temporary applications is sought.

The majority of applications (Figures 1.1 through 1.8) utilize FRP rebars 
to mitigate the risk of corrosion in concrete structures that operate in 
aggressive marine environments or are exposed to deicing salts. The ser-
vice life of these types of structures is strictly contingent with the durabil-
ity of the internal reinforcement. Although their initial cost (raw material 
and manufacturing costs) and environmental impact (CO2 emission dur-
ing the manufacturing process) may be slightly higher than that of con-
ventional steel, the use of FRP rebars in concrete structures subjected to 
harsh environments generates a significant potential for extending the ser-
vice life of these structures and lowering their overall life cycle cost [2,24]. 
Applications of this type include:

•	 Bridges at sea, retaining/sea walls, ports infrastructure, and dry 
docks (Figures 1.1 through 1.4)

•	 Bridge decks and railings where deicing salts are used (Figures 1.5 to 1.7)
•	 Locks and dam weirs (Figure 1.8)
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Table 1.1  Summary of tests and repetitions proposed by AC454

Property Test or calculation method No. of repetitions

Physical
Fiber content ASTM D2584 For each bar size: total 15 

(five from three separate 
lots)

Glass transition 
temperature

ASTM E1640 For four available bar sizes: 
total 10 (five from smallest 
and largest bar size each)

For five or more available 
bar sizes: total 15 (five 
from smallest, median, and 
largest bar size each)

Actual cross-sectional area ASTM D7205/D7205M For each bar size: total 15 
(five from three separate 
lots)

Nominal area and diameter Equivalency with round 
solid bar sizes no. 2 to 13

N/A

Maximum and minimum 
cross-sectional dimensions

ISO 17025 calibrated 
micrometer (reading 
accuracy to within 1% of 
the intended 
measurement)

For each bar size: total 15 
(five from three separate 
lots)

Mechanical
Tensile strength ASTM D7205/D7205M For each bar size: total 15 

(five from three separate 
lots)

Tensile modulus of elasticity ASTM D7205/D7205M
Shear strength 
(perpendicular to the bar)

ASTM D7617

Ultimate tensile strain Tensile strength to 
modulus of elasticity ratio

Bond strength ACI 440.3R (B.3) For four available bar sizes: 
total 10 (five from smallest 
and largest bar size each)

For five or more available 
bar sizes: total 15 (five 
from smallest, median, and 
largest bar size each)

Durability
Moisture absorption ASTM D570 or ASTM 

D5229/D5229M
For four available bar sizes: 
total 10 (five from smallest 
and largest bar size each)

For five or more available 
bar sizes: total 15 (five 
from smallest, median, and 
largest bar size each)

Resistance to alkaline 
environment

ACI 440.3R (B.6)
Exposure for 3000 h

Void content or longitudinal 
wicking

ASTM D5117

Continued
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Table 1.1 (Continued)  Summary of tests and repetitions proposed by AC454

Property Test or calculation method No. of repetitions

Bends
Strength of bend ACI 440.3R (B.5) For four available bar sizes: 

total 10 (five from smallest 
and largest bar size each)

For five or more available 
bar sizes: total 15 (five 
from smallest, median, and 
largest bar size each)

Table 1.2  Test methods cited by AC454

ASTM test methods
ASTM A615/A615M-09 (2012 IBC), -04a (2009 IBC): Standard Specification for 
Deformed and Plain Carbon Steel, ASTM International

ASTM C904-01 (2006): Standard Terminology Relating to Chemical-Resistant 
Nonmetallic Materials, ASTM International

ASTM D570-98 (1010): Standard Test Method for Water Absorption of Plastics, ASTM 
International

ASTM D792-08: Standard Test Methods for Density and Specific Gravity (Relative 
Density) of Plastics by Displacement

ASTM D2584-11: Test Method for Ignition Loss of Cured Reinforced Resins, ASTM 
International

ASTM D5117-09: Standard Test Method for Dye Penetration of Solid Fiberglass 
Reinforced Pultruded Stock, ASTM International

ASTM D5229/D5229M-92(2010): Standard Test Method for Moisture Absorption 
Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials, 
ASTM International

ASTM D7205/D7205M-06: Standard Test Method for Tensile Properties of Fiber-
Reinforced Polymer Matrix Composite Bars, ASTM International

ASTM D7617/D7617M-11: Standard Test Method for Transverse Shear Strength of 
Fiber-Reinforced Polymer Matrix Composite Bars, ASTM International

ASTM E1356-08: Standard Test Method for Assignment of the Glass Transition 
Temperatures by Differential Scanning Calorimetry, ASTM International

ASTM E1640-09: Standard Test Method for Assignment of the Glass Transition 
Temperature by Dynamic Mechanical Analysis, ASTM International

ACI guide
ACI 440.3R-12: Guide Test Methods for Fiber-Reinforced Polymers (FRPs) for 
Reinforcing or Strengthening Concrete Structures, American Concrete Institute

B.3: Test method for bond strength of FRP bars by pullout testing
B.5: Test method for strength of FRP bent bars and stirrups at bend locations
B.6: Accelerated test method for alkali resistance of FRP bars (Note: While this document 
suggests various exposure periods, for the purpose of this document and consistently 
with AC125, the exposure periods to be considered are 1000 and 3000 hours)
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The use of FRP rebars is also particularly attractive for buildings that 
host equipment sensitive to electromagnetic fields, such as magnetic 
resonance imaging (MRI) units; for bases of large motors; or for railway 
systems (Figures 1.9 through 1.11).

Furthermore, FRP reinforcement is the ideal material to reinforce con-
crete structures temporarily, such as “soft-eyes” that have to be demolished 
partially by tunnel boring machines (TBMs). The “soft-eye” consists of 
a reinforcing cage using GFRP bars, which can be easily cut by the TBM 
(Figures 1.12 through 1.15).

(b)

(a)

Figure 1.1  �CFRP grid-reinforced concrete bridge (a) view of completed bridge (insert 
shows pier reinforcement cage); (b) reinforcement cage for deck (Fukushima 
Prefecture, Japan).
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Figure 1.2  �Honopapiilani highway retaining sea wall south (Lahaina, Maui Hawaii).

Figure 1.3 � Dowel bars in concrete pavements (Port of Rotterdam, The Netherlands).
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Figure 1.5 � GFRP reinforced-concrete bridge deck (Morristown, Vermont).

Figure 1.4 � GFRP reinforced-concrete repair for Pearl Harbor dry docks (Honolulu, 
Hawaii).
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Figure 1.7 � GFRP cages prior to casting a bridge railing (Greene county, Missouri).

Figure 1.6 � GFRP reinforced-concrete bridge deck (Cookshire-Eaton, Quebec, Canada).
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Figure 1.8 � GFRP reinforced-concrete for Ice Harbor lock and dam fish weir (Walla 
Walla, Washington).

Figure 1.9 � GFRP reinforced-concrete slab for MRI rooms in hospital (York, Maine).
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Figure 1.10 � GFRP reinforced-concrete slab (Oran, Algeria).

(b)

(d)

(a)

(c)

Figure 1.11  �GFRP reinforced-concrete rail track structure: bars in concrete rail plinths 
((a) and (b)), deck bars for segmental precast elements (c), and high voltage 
pedestals in overhead rail guideway (d) (Miami, Florida).
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Figure 1.12 � GFRP reinforcement cage for soft-eye construction at a manufacturing plant 
(Angri, Italy).

Figure 1.13 � GFRP reinforced-concrete soft-eye for Washington Dulles International 
Airport people mover (Dulles, Virginia).
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(a) (b)

Figure 1.15  �GFRP soft-eyes for tunnel excavation (a) and (b) view of bars when TBM 
emerges (London, UK).

Figure 1.14 � GFRP reinforced-concrete soft-eye for Beacon Hill light rail transit (Seattle, 
Washington).
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Chapter 2

Material properties

2.1  INTRODUCTION

Even though other fabrication methods (e.g., braiding) and other 
fiber-reinforced polymer (FRP) forms (e.g., two-directional grids) are 
commercially available, this chapter intentionally deals with FRP bar 
products fabricated by pultrusion. A brief summary of the properties of 
the most commonly used types of fibers and polymers is provided as avail-
able in the ACI Guide 440.1R-06 [1], the FIB Bulletin 40 [2], and the 
Italian CNR Guide [3]. From a reference perspective, the most authorita-
tive and comprehensive source of information on composites is the Wiley 
Encyclopedia of Composites [4].

2.2  FRP BAR

An FRP bar is made of continuous fibers embedded in a matrix made of a 
polymeric resin. The fibers have the function of carrying the load; the resin 
has the function of binding together the fibers, transferring the load to the 
fibers, and protecting the fibers. The fiber and volume fraction significantly 
affect strength and stiffness of the FRP, while the resin type affects the 
failure mechanism and the fracture toughness.

An FRP bar is anisotropic and can be manufactured using different tech-
niques such as pultrusion, braiding, and weaving. Other factors influencing 
the properties of the bar are fiber orientation, rate of resin curing, manufac-
turing process, and quality control during manufacturing.

2.3 � CONSTITUENT MATERIALS: FIBERS AND RESIN MATRICES

In this section, fibers and resin matrices that are most commonly used to 
manufacture FRP bars are introduced and briefly discussed. Fiber and 
matrix properties listed here are to be considered as generic.
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2.3.1  Fibers

Fibers commonly used are glass, carbon, aramid, and basalt. Glass fibers 
offer an economical balance between cost and specific strength proper-
ties; this makes them preferable to carbon and aramid in most reinforced 
concrete (RC) applications. Basalt fibers have recently emerged as an alter-
native to glass fibers. Typical properties of glass, carbon, aramid, and basalt 
fibers are listed in Table 2.1.

2.3.1.1  Glass fiber

Glass fiber is primarily made from silica sand and is commercially avail-
able in different grades. The most common types of glass are electri-
cal (E-glass), high-strength (S-glass), and alkali-resistance (AR-glass). 
E-glass presents high electrical insulating properties, low susceptibility 
to moisture, and high mechanical properties. S-glass has higher ten-
sile strength and modulus, but its higher cost makes it less preferable 
than E-glass. AR-glass is highly resistant to alkali attack in cement-
based matrices, but, at the moment, sizings compatible with thermoset 
resins that are commonly used to pultrude FRP bars are not available. 
Composites made from glass fiber exhibit good electrical and thermal 
insulation properties.

2.3.1.2  Carbon fiber

Carbon fiber is made from polyacrylonitrile (PAN), pitch, or rayon fiber 
precursors. PAN-based carbon fiber is the predominant form used in 
civil engineering applications. PAN-based carbon fiber presents high 
strength and relatively high modulus. Pitch-based carbon fiber has higher 
modulus but lower strength, which makes it suitable for aerospace appli-
cations. Rayon and isotropic pitch precursors are used to produce low-
modulus carbon fiber. Based on its mechanical properties, carbon fiber 
can be classified as high modulus and low modulus. Carbon fiber has 
high fatigue strength, high resistance to alkali or acid attack, a low coef-
ficient of thermal expansion (CTE), relatively low impact resistance, 
and high electrical conductivity; it can cause galvanic corrosion when in 
direct contact with metals. Moreover, it is not easily wet by resins; there-
fore, sizing is necessary before embedding it in the resin. Generally, car-
bon fiber is about 10 times more expansive than glass fiber and exhibits 
strength and modulus about three times higher than glass.

2.3.1.3  Aramid fiber

Aramid fiber is an aromatic polyamide organic fiber. It offers good 
mechanical properties at a low density, high toughness, and high impact 
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resistance. Aramid fiber is a good insulator of both electricity and heat, 
and it is resistant to organic solvents, fuels, and lubricants. It is sensi-
tive to ultraviolet (UV) light, high temperature, and high humidity. The 
tensile strength of aramid fiber is higher than that of glass, and also the 
modulus is about 50% higher than that of glass. Kevlar is the most com-
mon type of aramid fiber and commercially available as Kevlar 29, 49, 
and 149. High cost limits the use of this type of fiber for manufacturing 
FRP bars.

2.3.1.4  Basalt fiber

Basalt fiber is slightly stronger and stiffer than E-glass, environmentally 
safe, nontoxic, noncorrosive, and nonmagnetic, and has high-heat stability 
and insulating characteristics [5–8]. Although basalt fiber is manufactured 
with the same technology utilized for E-glass fiber, its production process 
requires less energy, and the primary raw material (basalt rock) is available 
all around the world. Basalt fiber may offer the opportunity to engineer its 
mechanical properties by modification of the chemical composition result-
ing in a fiber having an elastic modulus higher than that of E-glass and, at 
the same time, high biosolubility. The latter property represents the capabil-
ity of basalt fiber to dissolve in the medium- to long term when in contact 
with biological liquids. Biosolubility is a requirement that recent interna-
tional directives have introduced in the glass fiber industry and its fulfill-
ment is considered the principal element to guide future market demand 
[5]. Research is ongoing to investigate the feasibility of basalt fiber for the 
production of FRP bars.

2.3.2  Matrices

Matrices are commonly thermoset polymeric resins. In their initial form, 
thermoset resins are usually liquids or low melting-point solids and they are 
cured with a catalyst and heat, or a combination of the two. Unlike thermo-
plastic resins, once cured, solid thermoset resins cannot be converted back to 
their original liquid form or reshaped. The most common thermosetting res-
ins used in the composites industry are epoxies, polyesters, and vinyl esters. 
Additives and fillers may be mixed with the resin to impart performance 
improvements, tailor the performance of the composites, and reduce costs. 
Typical properties of epoxy, polyester, and vinyl ester resins are listed in 
Table 2.2.

2.3.2.1  Epoxies

The principal advantages of epoxy resin are high mechanical properties, 
ease of processing, low shrinkage during cure, and good adhesion to 
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a wide variety of fibers. Epoxies have high corrosion resistance and are 
less affected by water and heat than other polymeric matrices. Their 
disadvantages are a high cost and long curing period (a postcuring process 
is generally required). Epoxy resin can also be formulated with different 
materials or blended with other resins to achieve specific performance 
features. Epoxies are primarily used for fabricating high-performance 
composites with superior mechanical properties, resistance to corro-
sive  liquids and environments, superior electrical properties, and good 
performance at elevated temperatures. Epoxy resins are compatible with 
glass, carbon, aramid, and basalt fibers. However, their use in the pultru-
sion industry is limited.

2.3.2.2  Polyesters

The main advantage of polyester resins is a balance of good mechanical, 
chemical, and electrical properties; dimensional stability; cost; and ease of 
processing. Polyester resins are, generally, relatively inexpensive and offer 
good mechanical and electrical performance. Because polyesters can be 
chemically tailored to meet the requirements of a wide range of applications, 
a number of specialty polyesters, which address specific performance such 
as flexibility, electrical insulation, corrosion resistance, heat and UV light 
resistance, fire retardancy, and optical translucence, are available. Styrene 
is usually mixed in large quantities (more than 10% by mass of the poly-
mer resin) to give a low viscosity liquid. Their use in the manufacturing of 
FRP bars is discouraged because of lower chemical resistance as compared 
to vinyl esters.

2.3.2.3  Vinyl esters

Vinyl esters exhibit some of the beneficial characteristics of epoxies such 
as chemical resistance and high strength as well as those properties of 
polyester such as viscosity and fast curing. Vinyl esters exhibit good alkali 
resistance and have good wet-out and good adhesion with glass fiber, 
which makes them the preferred choice to manufacture GFRP (glass FRP) 
composites.

2.4  MANUFACTURING BY PULTRUSION

The FRP bar is typically manufactured by pultrusion or variations of this 
process. Pultrusion is a continuous molding process that combines fiber 
reinforcement and thermosetting resin. This process is ideal for the con-
tinuous fabrication of composite parts that have a constant cross-sectional 
profile such as bars.
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As an example, the pultrusion process to manufacture a particular type 
of GFRP (glass fiber-reinforced polymer) bar is illustrated in Figure 2.1 
and Figure  2.2. Glass fibers, initially packaged in rovings, are drawn 
through a resin bath where the material is thoroughly impregnated with 
a liquid thermoset resin. Before entering the resin bath, fibers are spread 
out to allow for even wetting. The resin-impregnated fibers are first guided 
through a metal die that defines the size of the final bar and, then, enter a 
curing oven. Before entering the oven, sand coating and helicoidal wraps 
are applied on the surface of the bar. Inside the oven, heat is transferred 
under precise temperature control to the bar. The heat activates the resin 
curing, changing it from a liquid to a solid. The solid bar emerges from 
the curing oven to the exact size of the die cavity. The bar is continuously 
pulled and, finally, cut to the desired length. The duration of the process 
varies with the size of the final bar; typically, production speed is 3 ft 
(0.91 m) per minute.

The surface deformation of the FRP bar is critical to develop bond to 
concrete. Selected types of surface deformation patterns that are currently 
commercially available are illustrated in Figure 2.3. GFRP bars are gener-
ally produced in sizes ranging from 3/8 to 1 3/8 in. (9 to 41 mm) in diameter 
(i.e., no. 3 to no. 13). CFRP bars, instead, are typically only available in 
diameters from 3/8 to 6/8 in. (i.e., no. 3 to no. 6) (9 to 18 mm).

When using thermoset resin, FRP bars cannot be bent after resin cur-
ing; bends must be incorporated during manufacturing. In fact, after 

Resin bath

Pultrusion dies

Surface preparation

Cured bars

Oven

Raw glass

Figure 2.1 � Overall view of the production line of GFRP bars.
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Figure 2.3 � Surface deformation patterns for commercially available FRP bars: ribbed 
(top); sand-coated (middle); and wrapped and sand-coated (bottom).

(b)

(d)

(a)

(c)

Figure 2.2 � Phases of the manufacturing process of GFRP bars: (a) raw glass fibers in rov-
ings; (b) glass fibers drawn through a resin bath for impregnation and a metal 
die; (c) solid bar emerging from the curing oven; (d) cured bar ready to be cut 
at the desired length.
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the resin has passed the liquid state, bending or alteration of the FRP 
bar is not possible due to the inability of the fibers to reorient within the 
resin matrix.

2.4.1  Gel time and peak exothermic temperature

To set the rate of the manufacturing process, the gel time and the peak 
exothermic temperature of the thermoset resin have to be evaluated. The 
gel time is the time from the initial mixing of the reactants of a thermo-
set plastic composition to the time when solidification commences, under 
conditions approximating the conditions of use. The peak exothermic 
temperature is the maximum temperature reached by a reacting thermo-
set plastic composition during the curing process. Errors in estimating a 
correct rate may cause internal defects in the cured material, which would 
ultimately induce lower durability and mechanical properties of the cured 
material. Figure 2.4 shows an example of thermocracking due to under-
curing of the resin. Gel time and peak exothermic temperature are mea-
sured according to the ASTM D 2471, “Standard Test Method for Gel 
Time and Peak Exothermic Temperature of Reacting of Thermosetting 
Resins.” For this test method, the typical test setup and a sample test out-
put are shown in Figures 2.5(a) and 2.5(b). The bath simulates the oven 
environment and the resin samples are used to investigate the behavior of 
the resin in the oven.

�ermo-crack

Figure 2.4 � Thermocracking due to undercuring of the resin.
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Chapter 3

FRP bar properties

3.1 �� PHYSICAL AND MECHANICAL PROPERTIES 
OF FRP BARS

Typical physical and mechanical properties of three common types of 
fiber-reinforced polymer (FRP) bars are discussed as follows. From a ref-
erence perspective, the most authoritative and comprehensive source of 
information on physical and mechanical properties of composites is the 
Wiley Encyclopedia of Composites [1].

Density. The density of FRP bars ranges between about one-sixth to 
one-fourth that of steel, which reduces transportation costs and makes FRP 
bars easy to handle at the job site [2,3]. Typical values of density of FRP 
bars are listed in Table 3.1.

Coefficient of thermal expansion (CTE). Longitudinal and transverse 
CTEs of FRP bars depend on the fiber type, resin, and volume fraction of 
the constituents [3]. The polymeric matrices and the glass fibers can be con-
sidered isotropic, while carbon and aramid fibers are orthotropic. Carbon 
FRP (CFRP) and aramid FRP (AFRP) bars typically contract in the longi-
tudinal direction when temperature increases and dilate when temperature 
decreases (negative CTEs in the longitudinal direction). Typical longitudi-
nal and transverse CTEs of FRP bars are listed in Table 3.1.

Tensile behavior. The tensile behavior of FRP bars is characterized by a 
stress–strain relationship that is linear elastic up to failure [4,5]. If compared 
to steel bars, FRP bars offer higher tensile strength but lower ultimate ten-
sile strain (no yielding) and lower tensile modulus of elasticity. The tensile 
strength of an FRP bar varies with its diameter, while the longitudinal modu-
lus does not change appreciably [2,3]. This phenomenon is primarily due to 
the effects of shear lag [6]. Typical tensile properties of FRP bars are listed 
in Table 3.1.

Compressive behavior. Testing of FRP bars in compression is complicated 
by the occurrence of fiber microbuckling due to the anisotropic and nonho-
mogeneous nature of the FRP material and can lead to inaccurate measure-
ments [6]. Therefore, standard test methods are not well established yet. 
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The compressive strength reduces by up to 45%, 80%, and 22% with 
respect to the values in tension for the case of glass FRP (GFRP), AFRP, 
and CFRP bars, respectively [4,7]. The compressive modulus of elasticity is 
approximately 80% for GFRP, 85% for CFRP, and 100% for AFRP of the 
tensile modulus of elasticity for the same product [7,8]. Different modes of 
failure (transverse tensile failure, fiber microbuckling, or shear failure) may 
characterize the response of an FRP bar in compression, depending on the 
type of fiber, fiber volume fraction, and type of resin [4,7,9].

Transverse shear behavior. The behavior of FRP bars under transverse 
shear loading is mostly influenced by the properties of the matrix. FRP bars 
are generally weak in transverse shear. The shear strength can be increased 
by braiding or winding additional fibers in the direction transverse to the lon-
gitudinal one. Typical transverse shear strength of FRP bars ranges between 
4.3 and 7.3 kilopounds (kip) per square inch (ksi) (30 to 50 MPa) [10].

Creep rupture. When subjected to a sustained tensile load, FRP bars 
undergo progressive deformations, which may ultimately lead to failure 
(creep rupture) after a period of time called “endurance time.” It should be 
noted that the term “endurance limit” represents the level of tensile stress 
below which the element would never fail irrespective of the load duration. 
The creep-rupture endurance time depends on the ratio of the sustained ten-
sile stress to the short-term strength and the environmental conditions: The 
higher the sustained stress-to-strength ratio is and the harsher the environ-
mental conditions (high temperature, high exposure to UV light, and high 
alkalinity) are, the shorter the endurance time is [11–14]. An experimental 
study was conducted on 0.25 in. (6 mm) diameter smooth carbon, aramid, 
and glass FRP bars. The bars were tested at different load levels at room 
temperature in laboratory conditions. Test results showed that the percent-
age of initial tensile strength retained, linearly extrapolated at the 50-year 
endurance time, was about 30%, 50%, and 95% for GFRP, AFRP, and 
CFRP, respectively [11]. Other tests confirmed that CFRP bars exhibit a bet-
ter behavior under sustained-loads bars compared with GFRP bars [12–14].

Fatigue behavior. Carbon, aramid, and glass fibers are generally not 
prone to fatigue failure. In the last decades, data have been generated to 
characterize the fatigue behavior of stand-alone FRP materials. These data, 

Table 3.1  Typical FRP bar properties

Bar 
type

Density 
103 lb/yd3

CTE
Tensile 
strength 

ksi

Tensile 
modulus 

msi
Rupture 
strain %Long. 10–6/°F

Transv. 
10–6/°F

GFRP 3.63 ÷ 6.11 0.098 ÷ 0.17 0.35 ÷ 0.40 70 ÷ 230 5.1 ÷ 7.4 1.2 ÷ 3.1
CFRP 4.35 ÷ 4.67 –0.19 ÷ 0.0 1.2 ÷ 1.7 87 ÷ 535 15.9 ÷ 84.0 0.5 ÷ 1.7
AFRP 3.63 ÷ 4.11 –0.097 ÷ –0.32 0.99 ÷ 1.3 250 ÷ 368 6.0 ÷ 18.2 1.9 ÷ 4.4

Notes:	 1 lb/yd3 = 0.593 kg/m3; 1/°F = 1/(9/5*°C + 32); 1 ksi = 6.89 N/mm2; 1 msi = 0.645 m2.
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however, were obtained for specimens made for aerospace applications. 
Results indicated that the plot of the ratio of the stress and the initial static 
strength versus the logarithm of the number of cycles at failure shows a 
continued downward trend (per decade of logarithmic life) of about 10%, 
5%–6%, and 5%–8% for GFRP, AFRP, and CFRP, respectively [15–20]. 
The fatigue strength of CFRP bars encased in concrete was observed to 
be dependent on the moisture, the environmental temperature, the cyclic 
loading frequencies, and the ratio of maximum-to-minimum cyclic stress 
[14,21,22]. A recent study [23] showed that full-scale GFRP reinforced 
concrete bridge deck specimens exhibited better fatigue performance and 
longer fatigue life compared to their steel counterparts.

Durability. The mechanical properties of FRP bars are influenced by 
the environment. The presence of water, alkaline or acidic solutions, saline 
solutions, ultraviolet exposure, and high temperature may affect the tensile 
and bond properties of FRP bars.

Data from short-term experiments on bare bars (most of the time 
unstressed) subjected to alkaline environments are available. However, 
the extrapolation of these data to field conditions and expected lifetimes 
is difficult [24–26]. High pH degrades the tensile strength and modulus 
of GFRP bars [27]. The degradation is accelerated by high temperature 
and long exposure time. The reduction in tensile strength and modu-
lus in GFRP bars (stressed or unstressed) ranges from 0% to 75% and 
between 0% and 20%, respectively [28–33,35,36]. In the case of AFRP 
bars (stressed or unstressed), tensile strength and stiffness reduce between 
10% and 50%, and 0% and 20% of the initial value, respectively [37–39]. 
In the case of unstressed CFRP, strength and stiffness have been reported 
to each decrease between 0% and 20% [39]. Bars embedded in concrete at 
various temperatures and with good fiber–resin combinations show only 
limited degradation, which, however, increases with temperature and stress 
level [28–31,33–35,40,41]. Direct exposure of FRP bars to sunlight (UV 
rays) and moisture has a detrimental effect on the tensile strength. Strength 
reduces from 0% to 40% of its initial value in the case of GFRP bars, 0% 
to 30% for AFRP bars, and 0% to 20% for CFRP bars [34,42]. Although 
FRP bars embedded in concrete are not exposed to UV while in service, UV 
light may cause degradation during storage.

A field study conducted by the Intelligent Sensing for Innovative 
Structures (ISIS) Canada Research Network collected data with respect to 
the durability of GFRP bars in concrete exposed to natural environments 
[43,44]. Concrete cores containing GFRP bars were extracted from five 
selected structures: a 5-year-old harbor wharf and four 6- to 8-year-old 
reinforced concrete (RC) bridges. The GFRP bars were analyzed for their 
physical and chemical composition at the microscopic level. The experi-
mental results were compared with the ones obtained from control GFRP 
bars preserved under controlled laboratory conditions [45]. The results of 
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the analyses showed that there is no degradation of the GFRP bars in the 
real-life concrete structures. The analyses also indicated:

•	 No alkali ingress was observed in the GFRP bars from the concrete 
pore solution.

•	 The matrix in all GFRP bars was intact and unaltered from its origi-
nal state.

•	 Neither hydrolysis nor significant changes in the glass transition tem-
perature of the matrix took place after exposure for 5 to 8 years to 
the combined effects of the alkaline environment in the concrete and 
the external natural environment.

Bond-to-concrete behavior. Bond between FRP and concrete depends on 
the design, manufacturing process, mechanical properties of the bar itself, 
and the environmental conditions [46–50]. Bond stresses at the FRP bar/
concrete interface are transferred by chemical bond (adhesion resistance of 
the interface), friction, and mechanical interlock due to irregularity of the 
interface. In the FRP bar, bond stresses are transferred through the resin 
to the reinforcement fibers. The bond behavior of an FRP bar is, therefore, 
limited by the shear strength of the resin [51–58].

3.2  TEST METHODS

Due to differences in the physical and mechanical behavior of FRP mate-
rials compared to steel, unique test methods for FRP bars are required. 
Standards development organizations have developed consensus-based test 
methods for FRP reinforcement for use in structural concrete.

The American Society for Testing and Materials (ASTM) International 
and the International Organization for Standardization (ISO) offer stan-
dardized test methods related to the use of FRP composites in structural 
engineering. Testing procedures directly have also been developed by the 
American Concrete Institute (ACI). The document “Guide Test Methods for 
Fiber-Reinforced Polymer (FRP) for Reinforcing or Strengthening Concrete 
and Masonry Structures” [59], prepared by the ACI Committee 440, pro-
vides model test methods for the short-term and long-term mechanical, 
thermomechanical, and durability testing of FRP bars not yet standardized 
by ASTM. These recommended test methods are based on the knowledge 
gained from research results and literature worldwide.

3.2.1  ASTM test methods

Table 3.2 provides a list of the test methods applicable to FRP bars for 
use in nonprestressed concrete as available in ASTM. Of these methods, 
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the three that were specifically developed for FRP bars to be used in con-
crete are briefly discussed in the following.

ASTM D7205/D7205M, Tensile Properties of Fiber Reinforced Polymer 
Matrix Composite Bars. The area of the cross section of the FRP bar 
specimen is measured by applying the Archimedes principle (Figure 3.1). 
A bar sample of known length is immersed in a graduated cylinder filled 
with water. The increase of volume after immersing the sample is divided 
by the sample length to calculate the cross-sectional area. At least five 
measurements per lot of bars are required.

Table 3.2  ASTM test methods for FRP reinforcement

Property ASTM test methods

Cross-sectional area D7205 and D7205M
Longitudinal tensile strength and modulus D7205 and D7205M
Shear strength D7617 and D7617M
Creep properties D7337 and D7337M
Flexural properties D790 and D4476
Coefficient of thermal expansion (CTE) E831 and D696
Glass transition temperature E1356, E1640, D648, and E2092
Volume fraction D3171, D2584, and C882

Figure 3.1 � Measurement of the cross-sectional area of an FRP bar by the Archimedes 
principle.
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The FRP bar specimen of a given diameter and with length of at least 
40 diameters is tested to failure. The tensile strength of the bar is measured 
by dividing the tensile capacity (load at failure) by the cross-sectional area. 
The tensile modulus is calculated from the difference between the stress–
strain curve values at 20% and 50% of the tensile capacity, provided that 
the stress–strain curve is linear during this load range. The ultimate strain 
is the strain measured when the ultimate tensile capacity is reached or it can 
be calculated from the ultimate tensile capacity and modulus of elasticity. 
Photographic views of typical test setup and typical failure mode of a GFRP 
bar are shown in Figure 3.2(a–c). At the least, five specimens are required. 

Surface
characteristics of
tested GFRP bars

(c)

Extensometer mounted to the
tensile specimen

Fixed cross-head

Loading cross-head

Universal testing machine
used for tensile tests

(b)(a)

Bar

Figure 3.2 � (a) Typical tensile test setup; (b) close-up view of the extensometer used to 
measure the axial deformation; (c) typical failure mode of a GFRP bar specimen.
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A typical stress–strain curve of no. 3 GFRP and CFRP bars is shown in 
Figure 3.3.

Measuring mechanical properties of large FRP bars poses unique chal-
lenges when using ASTM D7205. For traditional wedge-type grips, the dif-
ficulty stems from the significant transverse stresses that must be applied 
to the bar as a prerequisite to apply large enough longitudinal tensile loads. 
The local stress triaxiality due to stress concentrations near the gripping 
sections usually leads to premature failure at such locations, instead of the 
desired test gauge section. For unidirectional FRP composites, whose trans-
verse strength is much less than the longitudinal strength, premature dam-
age in the gripping region occurs frequently and depends on the method 
of gripping. The mechanisms of load transfer vary between different grip 
designs but they can be categorized into two distinct groups. The first group 
transfers load by applying a clamping force and relies on the interface inter-
action. If this clamping force is applied uniformly, then a high shear stress 
will develop at the loaded end. The second group relies on the underlying 
principle of the traditional wedge grip with various augmentations to miti-
gate the shear stress concentrations on the loaded ends.

An ASTM-recommended system is included in Annex A1 of ASTM 
D7205 and involves the use of steel pipes filled with expansive grout or poly-
mer resin mixed with sand, as shown in Figure 3.4(c). The configuration 
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Figure 3.3 � Typical tensile stress–strain curve of no. 3 GFRP and CFRP bars.
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(a) (b)

Cap to prevent leaking before curing

Expansive grout

Steel pipe

Plug with central hole

Composite bar

(c)

Figure 3.4 � Successful axial tension tests: (a) 1.5 in. (38.1 mm) diameter bar; (b) 3/8 in. 
(9.5 mm) diameter bar; and (c) anchor schematics.
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of the  anchor is such that the grout forms a cylindrical shell around 
the specimen. After curing, the expansive grout exerts a pressure on 
the  specimen and decreases the likelihood of precipitating failure in the 
grip region. The clamping pressure exerted on the specimen is dependent 
upon the confinement provided by the steel pipe and the properties of the 
grout layer, including the thickness, modulus of elasticity, Poisson’s ratio, 
and coefficient of linear expansion. One advantage of the expansive grout-
based grip is that one can adjust the grout layer thickness, level of con-
finement, and specimen embedment length (gripping length) to achieve 
the desired gripping behavior. To achieve such a versatile design, accurate 
assessment of the gripping pressure as a function of steel pipe dimensions 
and grout thickness (volume) is needed.

A study by Schesser et al. [60] developed a method to determine the 
grout material properties, including modulus of elasticity and the coeffi-
cient of linear expansion using the ASTM-recommended configuration for 
actual bar testing. Based on these parameters and an analytical solution, a 
design procedure was derived to dimension the anchor for any type of bar 
commercially available as demonstrated by successfully testing more than 
100 specimens (Figure 3.4). The measured strength values were remarkably 
consistent with a coefficient of variance (CV) less than 5%. The design of 
expansive grout-based grips includes determination of the minimum grip-
ping length, optimum confinement pipe dimensions, and minimum grout 
material volume.

ASTM D7617/D7617M, Standard Test Method for Transverse Shear 
Strength of Fiber Reinforced Polymer Matrix Composite Bars. The shear 
strength is measured by forcing the FRP bar specimen to fail due to trans-
verse shear. Typical transverse shear test setup is shown in Figure 3.5. At 
least five specimens are required.

ASTM D7337/D7337M, Standard Test Method for Tensile Creep 
Rupture of Fiber Reinforced Polymer Matrix Composite Bars. The 
load-induced, time-dependent tensile strains of the FRP bar correspond-
ing to at least five levels of load (ranging between 20% and 80% of the 
tensile capacity) are measured at certain ages (such as after 1, 10, 100, 
and 1000 hours) and in correspondence of at least five selected levels of 
load. The empirical strain values are plotted with respect to time (that 
is expressed on a logarithmic scale) and an approximation line from the 
graph data is extrapolated by means of the least-square method. The load 
ratio at 1 million hours, as determined from the calculated approxima-
tion line, is the creep-rupture load ratio. The load corresponding to this 
creep-rupture load ratio is the million-hour creep-rupture capacity. The 
million-hour creep-rupture strength is calculated by dividing this load 
capacity by the cross-sectional area. At least five specimens at each level 
of load are required.
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3.2.2 � ACI 440 test methods

This section provides an overview of the test methods applicable to FRP 
bars for use in nonprestressed concrete that are outlined in ACI 440.3R 
“Guide Test Methods for Fiber-Reinforced Polymer (FRP) for Reinforcing 
or Strengthening Concrete and Masonry Structures” [59] and summarized 
in Table 3.3.

Test method for bond strength of FRP bars by pullout testing (test method 
B.3). Various types of test methods are available for the determination of 
different bond values of FRP reinforcement in concrete structures, as shown 
schematically in Figure 3.6 [61–64]. In this method, the bond strength of 
the FRP bar specimen is measured by pullout testing. The direct pullout 
test consists of measuring the pullout strength of an FRP bar embedded in 
a concrete block through a predetermined bonded length. A bond breaker is 
applied along the first five diameters on the pulling side of the bar, to mini-
mize any undesired confinement effect that may affect the bond character-
istics. Schematic and photographic views of a typical test setup and typical 
failure mode of a GFRP bar are shown in Figure 3.7(a–d). Typical free and 

Figure 3.5 � Typical transverse shear test setup.
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loaded end bond-slip curves of a no. 4 GFRP bar are shown in Figure 3.8. 
The number of test specimens for each test condition should not be less than 
five. Other types of pullout tests include the rod–rod pullout test (Figures 3.9 
and 3.10) and the beam-type pullout test (Figures 3.11 and 3.12). For both of 
these tests, typical test setups and results are shown in the referenced figures.

Test method for strength of FRP bent bars and stirrups at bend locations 
(test method B.5). The ultimate load capacity of the FRP stirrup specimen 
is measured by testing in tension the straight portion of an FRP C-shaped 
stirrup whose bent ends are embedded in two concrete blocks [65]. For 
assuring stability during testing, two FRP C-shaped stirrups are tested 
simultaneously and the failure is forced to occur at one of the two ends. 
Figures 3.13(a) and 3.13(b) show the test setup and the typical failure of an 
FRP bent bar specimen, respectively. The ultimate tensile capacity of the 
bent FRP stirrup is measured and compared to the ultimate tensile strength 
to obtain the strength-reduction factor due to bend effects. At the least, five 
specimens are required.

Accelerated test method for alkali resistance of FRP bars (test method 
B.6). The alkali resistance of the FRP bar specimen has been the subject of 
intense research [66–69]. In this test, it is measured considering three differ-
ent conditionings. A first set of bar specimens is tested in tension after being 

Table 3.3  ACI test methods for FRP reinforcement

Property
ACI 440 test 

method Relationship to ASTM standards

Bond properties B.3 ASTM C234 has been withdrawn. The only 
remaining ASTM test method for bond of steel 
bars to concrete is the beam-end test method 
(A944), which has not been modified for use 
with FRP bars.

Bent bar capacity B.5 No existing ASTM test method is available.
Durability 
properties

B.6 No existing ASTM test method is available.

Fatigue properties B.7 Method provides specific information on 
anchoring bars in the test fixtures and on 
attaching elongation measuring devices to the 
bars not available in ASTM D3479. Method 
also requires specific calculations that are not 
provided in the ASTM method.

Relaxation 
properties

B.9 Method provides specific information on 
anchoring bars in the test fixtures and on 
attaching elongation measuring devices to the 
bars not available in ASTM D2990 and E328. 
Method also requires specific calculations that 
are not provided in the ASTM method.

Corner radius B.12 No existing ASTM test method is available.
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aged in an alkaline solution1 (with a pH included between 12.6 and 13) at 
140°F (60°C) for exposure times of 1, 2, 3, 4, and 6 months. A second set 
of bar specimens is subjected to a constant tensile load for exposure times 
of 1, 2, 3, 4, and 6 months while immersed in the alkaline solution inside an 
environmental cabinet and having a constant temperature of 140°F (60°C). 
A third set of bar specimens embedded in concrete is subjected to the same 
conditioning as the second set. The magnitude of the sustained load is 
meant to be representative of the service conditions or such to induce a ten-
sile strain of at least 2000 microstrain. At the end of the three series of tests, 

1	 The suggested composition of the alkaline solution consists of 118.5 g of Ca(OH)2, 0.9 g of 
NaOH, and 4.2 g of KOH in 1 L of deionized water.

Dogbone Dogbone

(f ) (g)

(d) (e)

(a) (b) (c)

Crack Initiators

Figure 3.6 � Types of test methods for different bond values of FRP reinforcement in con-
crete: (a) pullout specimen; (b) beam-end specimen; (c) simple beam speci-
men; (d) hinged beam-end specimen; (e) splice specimen; (f) cantilever beam 
specimen (without dogbones); and (g) cantilever beam specimen (with dog-
bones) (ACI 440-3R).



FRP bar properties  47
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Debonded Length
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Pull-out Load
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Bonded
length

Figure 3.7 � (a) Direct pullout bond test schematic; (b) typical pullout bond test setup; 
(c, d) typical failure modes of a GFRP bar specimen.
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Figure 3.10 � Comparison of the test results obtained by direct pullout versus rod–rod 
pullout on no. 4 GFRP bar.
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Figure 3.9 � Rod–rod pullout bond test: (a) schematic and (b) photographic views.
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for all specimens, the mass change and the tensile capacity retention are 
computed. The tensile capacity retention corresponds to the ratio between 
the ultimate tensile capacity of the conditioned FRP bar specimen and the 
ultimate tensile capacity of a benchmark nonconditioned FRP bar. At least 
five specimens are required for each type of conditioning.

Test method for tensile fatigue of FRP bars (test method B.7). The tensile 
fatigue of the FRP bar is measured by applying a tensile load of magni-
tude included between 20% and 60% of the tensile capacity, and frequency 
included between 1 and 10 Hz. The FRP bar specimen is expected to fail 
in the gauge length at a cycle count of between 103 and 2 × 106 cycles. The 
numbers of repeated loading cycles required to fail the FRP bar are used 

Plastic sleeves

Bonded
length

LVDT’s

F/2 150 F/2

FRP rod 100

386 63.563.5
650
800
(a)

(b)

Figure 3.11 � Beam-type pullout bond test: (a) schematic and (b) photographic views.
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to create S–N curves for a particular set of testing conditions where the 
principal variable is the maximum value of the repeated load. At least five 
specimens at each level of load are required.

Test method for determining the effect of corner radius on tensile 
strength of FRP bars (test method B.12). The effect of the corner radius on 
tensile strength of the FRP bar is measured using a unique fixture. The test 
consists in pulling the straight sides of a reverse-U shaped FRP bar while 
the fixture, reacting against the testing machine frame, allows transferring 
the load to the bent portion. A photographic view of the test setup, a sche-
matic view, and a typical failure mode of a bent GFRP bar are shown in 
Figure (3.14). At the least, five specimens are required.

3.3 � PRODUCT CERTIFICATION AND 
QUALITY ASSURANCE

Product certification and quality assurance during FRP manufacturing are 
critical to ensure that what is specified by the engineer eventually ends up 
at the construction site for the contractor to install. Permitted constituent 
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pullout on no. 4 GFRP bar.



FRP bar properties  51

materials, limits on constituent volumes, and minimum reinforcements for 
CFRP and GFRP bars to be used as nonprestressed concrete are indicated 
in ACI 440.6, “Specification for carbon and glass fiber-reinforced polymer 
bar materials for concrete reinforcement” [70]. As partially apparent in its 
title, this standard covers GFRP and CFRP bars made with thermosetting 
resins only (excluding polyesters).

For the determination of each of the mechanical and durability proper-
ties for product certification and quality assurance, ACI 440.6 prescribes 
the testing of at least 25 samples obtained in groups of five from five dif-
ferent production lots. The following sections summarize the requirements 
of this standard.

3.3.1 � Constituent materials

The test method of reference for measuring the constituent in an FRP 
bar sample is the ASTM D3171, “Standard test method for constituent 
content of composite materials.” With this test method, the fiber volume is 

(a) (b)

Figure 3.13 � Views of the (a) test setup and (b) a failed specimen.



52  Reinforced concrete with FRP bars: Mechanics and design﻿

determined by chemical matrix digestion, in which the matrix is chemically 
dissolved and the fibers weighed and calculated from substituent weights 
and densities.

A different test method is generally used to measure the fiber content. 
The reference is the ASTM D 2583, “Standard test method for ignition loss 
of cured reinforced resins.” This test allows determining the ignition loss 
(or resin content) and the reinforcement content of the cured reinforced 
resin by heating a bar sample at 1500°F (815°C). What remains of a GFRP 
bar sample at the end of the test is shown in Figure 3.15.

(F) Chuck

(f ) Chuck

(d) Lower part

(a) Upper part

(b) Corner insert
(b) Corner insert (g) Yoke

FRP bar

(a) (b)

(c)

Figure 3.14 � (a) Typical test setup; (b) assembled test fixture sketch; (c) typical failure 
mode of a bent GFRP.
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Inaccurate proportions between resin and reinforcement may cause 
internal defects in the cured material, which would ultimately induce lower 
durability and mechanical properties. An example of void due to lack of 
reinforcing glass is shown in Figure 3.16.

According to ACI440-6, polyester cannot be used as the base polymer 
in FRP bar manufacturing because of the high content of styrene.1 Styrene 
can be added to any polymer resin during processing, but its content cannot 
exceed 10% by mass of the polymer resin.

1	 Styrene has been recently described by the US National Toxicology Program as a possible 
carcinogen for human health.

Figure 3.15 � Typical GFRP bar sample at the end of the ignition loss test.

Figure 3.16 � Voids in the cured material due to lack of glass.
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Other requirements on fillers and additives are also provided in ACI 
440-6.

3.3.2 � Glass transition temperature (TG)

ACI 440.6 requires the TG of the resin not to be smaller than 212°F (100°C). 
Two test methods are specified for determining the TG of a resin: ASTM E 
1356, “Standard test method for assignment of the glass transition temper-
ature by differential scanning calorimetry,” and ASTM E 1640, “Standard 
test method for assignment of the glass transition temperature by dynamic 
mechanical analysis.”

The Barcol hardness test complements the measurement of TG as an 
indirect measure of the degree of cure of a composite (Figure 3.17). The 
test method of reference is the ASTM D 2583, “Standard test method for 
indentation hardness of rigid plastics by means of a Barcol impressor.” This 
test characterizes the indentation hardness of materials through the depth 
of penetration of an indentor and gives indications of the quality of the 
resin curing.

3.3.3 � Bar size

ACI 440.6 defines the standard sizes and the nominal diameters for FRP 
bars to be used for designation and design (Table 3.4). The test method 

Figure 3.17 � Barcol hardness test setup and apparatus.
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of reference for measuring the diameter of an FRP bar is the one given in 
ASTM D7205, “Standard test method for tensile properties of fiber rein-
forced polymer matrix composite bars.”

3.3.4 � Mechanical properties

ACI 440.6 defines the minimum values of tensile strength, tensile mod-
ulus of elasticity, tensile ultimate strain, transverse shear strength, and 
bond strength that have to be guaranteed by the manufacturer for prod-
uct certification. The minimum values of tensile strength are reported in 
Table 3.4. Minimum values of tensile modulus of elasticity, tensile ulti-
mate strain, transverse shear strength, and bond strength are listed in 
Table 3.5.

Table 3.5  �Minimum guaranteed values of tensile elastic modulus, tensile ultimate 
strain, transverse shear strength, and bond strength

Property

Bar type

GFRP CFRP

Modulus of elasticity (ksi) 5,700 18,000
Ultimate tensile strain (%) 1.2 0.5
Transverse shear strength (ksi) 18 18
Bond strength (ksi) 1.4 1.4

Note:	 1 ksi = 6.89 N/mm2.

Table 3.4  �Size designation, minimum inside bend radius of bent bars, and minimum 
guaranteed tensile strength of FRP round bars

Bar size 
designation

Nominal 
diameter (in.) Nominal area (in.2)

Bend radius 
(in.)

Minimum guaranteed 
tensile strength (ksi)

GFRP CFRP

2 0.250 0.05 3/4 110 230
3 0.375 0.11 11/8 105 190
4 0.500 0.20 11/2 100 170
5 0.625 0.31 17/8 95 160
6 0.750 0.44 21/4 90 160
7 0.875 0.60 25/8 85 N/A
8 1.000 0.79 3 80 N/A
9 1.125 1.00 41/2 75 N/A
10 1.270 1.27 5 70 N/A

Notes:	 1 in. = 25.4 mm; 1 in.2 = 645 mm2; 1 ksi = 6.89 N/mm2; N/A = not available.
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3.3.5 � Durability properties

To evaluate the durability properties of GFRP and CFRP bars, ACI 440.6 
requires the evaluation of moisture absorption, resistance to alkaline envi-
ronment, and longitudinal wicking for product certification.

Moisture content. ACI 440.6 requires that the average of the individual 
measurements be not less than 1.0%. The moisture content of a plastic is inti-
mately related to the durability and mechanical properties of the FRP bar. 
The test method of reference is the ASTM D 570, “Standard test method for 
water absorption of plastics.” The objective of this test method is to deter-
mine the relative rate of absorption of water by plastic when immersed in 
water. A photographic view of samples being tested is shown in Figure 3.18. 
An alternative test method that can be used for moisture content measure-
ment is ASTM D5229, “Standard test method for moisture absorption prop-
erties and equilibrium conditioning of polymer matrix composite materials.”

Resistance to alkaline environment. ACI 440.6 has not defined yet the 
minimum strength retention values to characterize the resistance to alka-
line environments. The test method of reference is the one discussed in test 
method B.6 of ACI 440.3R.

Longitudinal wicking. To guarantee the integrity of the composite mate-
rial, ACI 440.6 does not allow continuous voids in the resin. The presence 
of voids and cracks is detrimental. These defects may be due to shrinkage of 
the resin during processing or poor consolidation of fibers and resin matrix 
during production. Hollow fibers in the cured material are allowed. The test 
method of reference to measure the longitudinal wicking is the ASTM D 
5117, “Standard test method for dye penetration of solid fiberglass reinforced 
pultruded stock.” A typical case of voids in the bar is due to the presence of 
hollow fibers shown in Figure 3.19.

Figure 3.18 � Water absorption test.
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3.3.6  Bent bars

Only FRP bars that are made with thermosetting resin are allowed by ACI 
440.6. For such bars, the bends can be made only while the resin is still in 
its liquid state. ACI 440.6 defines the minimum values of inside bend radius 
for GFRP and CFRP bent bars (Table 3.4). Minimum values of the strength 
of bends have not yet been established.

3.4 � PERFORMANCE OF FRP RC UNDER 
FIRE CONDITIONS 

The performance of an FRP RC member under fire strictly relies on the 
temperature the embedded bars experience. When the surface of an FRP 
bar embedded in the concrete exposed to fire approaches  the glass transi-
tion temperature (Tg) of the resin matrix, the resin begins to decompose and 
eventually becomes unable to transfer the stresses from the concrete to the 
fibers because of the loss of bond between the FRP bar and the surrounding 
concrete. When the temperature of the bar exceeds Tg, the individual fibers 
can continue to carry the load if adequate bond is provided in the zones not 
exposed to fire (cold anchorage region). The RC member collapse ultimately 
occurs when the temperature of the fibers reaches their critical temperature.

The behavior of FRP bars under fire conditions is affected by several 
parameters, namely fiber type, matrix type, bar diameter, fiber volume 
fraction, manufacturing process, and surface treatment. Available research 

Figure 3.19 � Voids due to the presence of hollow glass fibers.
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[71–74] shows that both CFRP and GFRP bars when tested in tension under 
temperatures in the proximity of Tg [about 150 to 250°F (65 to 120°C)] 
experience a small reduction in tensile strength and elastic modulus, while a 
reduction larger than 50% is typically reached at temperatures higher than 
approximately 620°F (325°C) and 480°F (250°C) for GFRP and CFRP, 
respectively. Both CFRP and GFRP bars predictably experience an almost 
full loss of bond strength with the surrounding concrete at temperatures in 
the range of Tg, since bond fully depends upon the mechanical properties of 
the resin at the surface of the bars.

Guidance on the performance of FRP RC members under fire conditions 
is still limited. Because of their different behavior at elevated temperatures, 
the guidelines proposed by ACI 216 [75] for determining the fire resistance 
of steel RC members are not applicable in the case of FRP reinforcement. 

A recent publication by Nigro et al. [76] proposes a new methodology 
to perform fire safety checks for bending moment capacity of unprotected 
FRP RC flexural members exposed to fire on the side of the fibers under 
tension. This conceptual approach is discussed in Chapter 4 (Section 4.12) 
and its application is explained in Chapter 6 (Step 10).
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Chapter 4

Flexural members

NOTATION

Acp	 = � area enclosed by outside perimeter of concrete cross section, 
in.2 (mm2)

Af	 =  area of FRP reinforcement in2. (mm2)
Afb	 = � area of flexural reinforcement producing balanced failure, in.2 

(mm2)
Af,bar	 =  area of one FRP bar, in.2 (mm2)
Af,i	 =  area of reinforcement in i-th layer, in.2 (mm2)
Af,min	 =  �minimum area of FRP reinforcement needed to prevent failure 

of flexural members upon cracking, in.2 (mm2)
Af,sh	 =  �area of shrinkage and temperature FRP reinforcement per 

linear foot, in.2 (mm2)
Afv	 =  �amount of FRP shear reinforcement within spacing s, in.2 (mm2)
Afv,min	 =  �minimum amount of FRP shear reinforcement within spacing 

s, in.2 (mm2)
Aoh	 =  �area enclosed by centerline of the outermost closed transverse 

torsional reinforcement, in.2 (mm2)
As	 =  area of tension steel reinforcement, in.2 (mm2)
At	 =  �area of one leg of a closed stirrup resisting torsion within spacing 

s, in.2 (mm2)
Avf	 = � area of shear friction reinforcement perpendicular to the plane of 

shear
a	 =  depth of equivalent rectangular stress block, in. (mm)
b	 =  width of rectangular cross section, in. (mm)
bo	 =  perimeter of critical section for slabs and footings, in. (mm)
beff	 =  effective width of the slab, in. (mm)
bw	 =  width of the web, in. (mm)
C	 =  Compressive force, lb (N)
CE	 =  �environmental reduction factor for various fiber types and 

exposure conditions
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c	 =  �distance from extreme compression fiber to the neutral axis, 
in. (mm)

c	 =  �spacing or cover dimension
cb	 =  �distance from extreme compression fiber to neutral axis at bal-

anced strain condition, in. (mm)
ccr	 =  cracked neutral axis depth, in. (mm)
D	 =  diameter of circular cross section, in. (mm)
d	 =  �distance from extreme compression fiber to centroid of tension 

reinforcement, in. (mm)
db	 =  diameter of reinforcing bar, in. (mm)
dc	 =  �thickness of concrete cover measured from extreme tension 

fiber to center of bar or wire location closest thereto, in. (mm)
di	 = � distance from centroid of ith layer of longitudinal reinforcement 

to geometric centroid of cross section, in. (mm)
e	 =  ratio of εfu over εcu

df	 =  effective depth of the FRP reinforcement, in. (mm)
Ec	 =  modulus of elasticity of concrete, psi (MPa)
Ef	 =  �design or guaranteed modulus of elasticity of FRP defined as 

mean modulus of sample of test specimens (Ef = Ef,ave), psi (MPa)
Ef,ave	 =  average modulus of elasticity of FRP, psi (MPa)
Es	 =  modulus of elasticity of steel, psi (MPa)
f ′c	 =  specified compressive strength of concrete, psi (MPa)
fr	 =  modulus of rupture of concrete, psi (MPa)
ff	 =  stress in FRP reinforcement in tension, psi (MPa)
ffb	 =  strength of bent portion of FRP bar, psi (MPa)
ffd	 =  design tensile strength, psi (MPa)
ffe	 =  �bar stress that can be developed for embedment length le, psi (MPa)
ffr	 =  required bar stress, psi (MPa)
ff,s	 =  stress level induced in FRP by sustained loads, psi (MPa)
ffu	 =  �design tensile strength of FRP, considering reductions for ser-

vice environment (ffu = CEf *fu), psi (MPa)
f*

fu	 =  �guaranteed tensile strength of FRP bar, defined as mean tensile 
strength of sample of test specimens minus three times stan-
dard deviation (f *fu = ffu,ave – 3σ), psi (MPa)

ffv	 =  �tensile strength of FRP for shear design, taken as smallest of 
design tensile strength ffu, strength of bent portion of FRP stir-
rups ffb, or stress corresponding to 0.004Ef, psi (MPa)

fs	 =  allowable stress in steel reinforcement, psi (MPa)
fu,ave	 =  mean tensile strength of sample of test specimens, psi (MPa)
fvf	 =  �shear friction stress in reinforcement
fy	 =  �specified yield stress of nonprestressed steel reinforcement, psi 

(MPa)
h	 =  overall height of rectangular member, in. (mm)
I	 =  moment of inertia, in.4 (mm4)



Flexural members  69

Icr	 =  moment of inertia of transformed cracked section, in.4 (mm4)
Ie	 =  effective moment of inertia, in.4 (mm4)
Ig	 =  gross moment of inertia, in.4 (mm4)
K1	 =  parameter accounting for boundary conditions
k	 =  ratio of depth of neutral axis to reinforcement depth
kb	 =  bond-dependent coefficient
km	 =  neutral axis depth to reinforcement depth ratio at midspan
l	 =  span length of member, ft (m)
la	 =  �additional embedment length at support or at point of inflec-

tion, in. (mm)
lbhf	 =  �basic development length of FRP standard hook in tension, 

in. (mm)
ld	 =  development length, in. (mm)
le	 =  embedded length of reinforcing bar, in. (mm)
fct	 =  tensile strength of concrete, psi (MPa)
fft	 =  tensile strength of transverse reinforcement, psi (MPa)
kcreep-R	 =  creep rupture factor
ld,fi,t,T>Tcr	= � embedment length of a bar with a temperature exceeding 122°F 

(50°C)
lthf	 =  length of tail beyond hook in FRP bar, in. (mm)
M	 =  maximum positive moment lb-in.(N-mm)
m	 =  non-dimensional moment parameter
Ma	 =  �maximum moment in member at stage deflection is computed, 

lb-in. (N-mm)
MC, MT	=  �contributions to nominal moment capacity for circular section, 

lb-in. (N-mm)
Mcr	 =  cracking moment, lb-in. (N-mm)
Mn	 =  nominal moment capacity, lb-in. (N-mm)
Mnb	 = � nominal moment strength corresponding to balanced failure, 

lb-in. (N-mm)
Ms	 =  moment due to sustained load, lb-in. (N-mm)
Mu	 =  factored moment at section, lb-in. (N-mm)
nf	 =  �ratio of modulus of elasticity of FRP bars to modulus of elasticity 

of concrete
pcp	 =  outside perimeter of concrete cross section, lb-in. (N-mm)
rb	 =  internal radius of bend in FRP reinforcement, in. (mm)
s	 =  �stirrup spacing or pitch of continuous spirals, and longitudinal 

FRP bar spacing, in. (mm)
T	 =  temperature, oC
T1, T2	 =  tensile force corresponding to A1 and A2, lb (N)
Tf,i	 =  tensile force in ith layer, lb (N)
T, Tmax	 =  tensile force and maximum tensile force, lb (N)
Tn	 =  nominal torsional moment strength, lb-in. (N-mm)
Tg	 =  glass transition temperature, °F (°C)
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Tu	 =  factored torsional moment at section, lb-in. (N-mm)
t	 =  time, minutes
tslab	 =  slab thickness, in. (mm)
u	 =  �average bond stress acting on the surface of FRP bar, psi (MPa)
Vc	 =  nominal shear strength provided by concrete, lb (N)
Vf	 =  shear resistance provided by FRP stirrups, lb (N)
Vn	 =  nominal shear strength at section, lb (N)
Vs	 =  shear resistance provided by steel stirrups, lb (N)
Vu	 =  factored shear force at section, lb (N)
w	 =  maximum crack width, in. (mm)
wc	 = � maximum crack width at the tension face of a flexural member, 

in., (mm)
x, xb	 =  �distance of N.A. from compression edge and at balanced condi-

tion, in. (mm)
yt	 =  �distance from centroidal axis of gross section, neglecting rein-

forcement, to tension face, in. (mm)
α	 =  angle of inclination of stirrups or spirals
α	 =  top bar modification factor
α	 =  ratio of x over d
α1	 =  �ratio of average stress of equivalent rectangular stress block 

to f ′c
αL	 =  longitudinal coefficient of thermal expansion, 1/°F (1/°C)
αT	 =  transverse coefficient of thermal expansion, 1/°F (1/°C)
β	 =  �ratio of distance from neutral axis to extreme tension fiber to 

distance from neutral axis to center of tensile reinforcement
β1	 =  �factor relating depth of equivalent stress block to neutral axis 

depth
β2	 =  �factor representing the influence of the load duration and 

repetition
βd	 =  reduction coefficient used in calculating deflection
γ	 =  ratio of d over h or of d over D for columns
Δ(cp+sh)	 =  �additional deflection due to creep and shrinkage under sus-

tained loads, in. (mm)
(Δi)sus	 =  immediate deflection due to sustained loads, in. (mm)
(Δ/l)max	 =  limiting deflection-span ratio
εc	 =  strain in concrete
εcu	 =  ultimate strain in concrete
εf	 =  strain in FRP reinforcement
εf i	 =  reinforcement strain in ith layer
εo	 =  maximum strain of unconfined concrete corresponding to fc

εfu	 =  design rupture strain of FRP reinforcement
ε*

fu	 =  �guaranteed rupture strain of FRP reinforcement defined as the 
mean tensile strain at failure of sample of test specimens minus 
three times standard deviation (ε*

fu = εu,ave – 3σ)



Flexural members  71

εm	 =  reinforcement tensile strain at midspan
εu,ave	 =  mean tensile strain at rupture of sample of test specimens
εv	 =  �shear friction strain in reinforcement
εy	 =  design yield strain
η	 =  �ratio of distance from extreme compression fiber to centroid 

of tension reinforcement (d) to overall height of flexural 
member (h)

λ	 =  multiplier for additional long-term deflection
μ	 =  �coefficient of subgrade friction for calculation of shrinkage and 

temperature reinforcement
ξ	 =  time-dependent factor for sustained load
ρ′	 =  ratio of steel compression reinforcement, ρ′ = As′/bd
ρb	 =  FRP reinforcement ratio producing balanced strain conditions
ρf	 = � average deterioration factors for modulus of elasticity at a spe-

cific temperature T in oC
ρf	 =  FRP reinforcement ratio
ρf′	 =  ratio of FRP compression reinforcement
ρfv	 =  ratio of FRP shear reinforcement
ρf,ts	 =  �reinforcement ratio for temperature and shrinkage FRP 

reinforcement
ρmin	 =  minimum reinforcement ratio for steel
σ	 =  standard deviation
σc	 =  compressive stress, psi (MPa)
χ	 =  curvature
ϕ	 =  strength reduction factor
ωf	 =  tension reinforcement index
ωf b	 =  �tension reinforcement index corresponding to balanced failure

4.1  INTRODUCTION

In this chapter, the design of slabs and beams is discussed. Following the 
conventional design procedure, this chapter first investigates the structural 
analysis of flexural members and elaborates on the parameters that define 
the input and determine the output of such analysis methods. Next, flexural 
design with fiber-reinforced polymer (FRP) bars is discussed and it is dem-
onstrated how their mechanical behavior can divert the design process 
from methods that are well established for steel bars. Flexural design is 
completed by detailing and explaining the serviceability provisions of FRP 
reinforced concrete (FRP RC) flexural members that, when compared to 
steel RC, play a more prominent role in the overall design process. Shear 
design of flexural members with or without FRP transverse reinforcement 
concludes this chapter. Chapters 6–8 and 10 propose design examples that 
clarify the topics covered in this chapter.
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4.2  STRUCTURAL ANALYSIS

FRP RC slabs and beams are designed to resist the maximum effects induced 
by the factored and the service loads. These maximum effects can be com-
puted based on the elastic or plastic structural analyses. When applicable, 
approximate analysis methods are also available. Frame analysis to com-
pute maximum design bending moments and shear forces in concrete slabs 
and beams is outside the scope of this book.

4.2.1 � Loading conditions for ultimate 
and serviceability limit states

For the design of flexural members, the following load combinations are 
generally considered [1,2]:

	 U = 1.2D + 1.6L	 (4.1)

	 U = 1.2D + 1.6 (Lr or S or R) + (1.0L or 0.8W)	 (4.2)

	 U = 1.2D + 1.6W + 1.0L + 0.5 (Lr or S or R)	 (4.3)

where D is the dead load, L is the live load, Lr is the roof live load, S is the 
roof snow load, R is the roof rain load, and W is the roof wind load.

Traditionally, the load combinations for serviceability limit states use a 
load factor of 1.0 on all service loads [1].

4.2.2  Concrete properties

Several models interpreting the behavior of concrete in compression are 
available in the technical literature. The compressive stress–strain diagram 
for normal strength concrete proposed by Todeschini, Bianchini, and 
Kesler [3] is represented in Figure 4.1. f ′c is the design concrete compressive 

εc

σc

εcu1.71fc´

0.9fc´

Ec
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strength and εcu is the maximum usable concrete compressive strain and is 
assumed equal to 0.003.

For ultimate strength calculations controlled by concrete crushing, 
ACI 318-11 [2] allows the approximation of the stress–strain curve to an 
equivalent rectangular stress, or “stress block,” distribution as discussed 
in Section 4.5. In the design examples discussed in the chapters of Part 3, 
the stress–strain curve proposed by Todeschini et al. [3] is adopted when 
concrete crushing does not control failure.

Modulus of elasticity. The modulus of elasticity of concrete varies with 
concrete compressive strength (f ′c), concrete age, properties of cement and 
aggregates, and rate of loading. Based on statistical analysis of experi-
mental data available for concrete with unit weights, w, varying between 
90 and 155 pcf (1442 and 2483 kg/m3), ACI 318-11 [2] provides the follow-
ing empirical equation for computing the modulus of elasticity:

	 E w fc c33 1.5= ⋅ ′ 	 (4.4)

	 E w fc c[or 0.43 1.5= ⋅ ′ in SI units]

This equation is representative of the secant modulus for a compressive 
stress at service load. The secant modulus of elasticity in tension is gener-
ally assumed to be the same as in compression for computing deflections 
under service conditions.

For normal-weight concrete weighing 145 pcf (2323 kg/m3), the follow-
ing simplified equation is suggested by ACI 318-11:

	 E fc c57000= ′ 	 (4.5)

	 E fc c[or 4700= ′ in SI units]

It must be noted that, generally, creep and shrinkage over time cause a 
reduction of the secant modulus in compression inducing larger deflections. 
These effects are not taken into consideration in either Equation (4.4) 
or (4.5).

Tensile strength. ACI 318-11 suggests the following equation to compute 
the concrete tensile strength:

	 f fct c7.5= λ ′ 	 (4.6)

	 f fct c[or 0.6= λ ′ in SI units]

where λ is a modification factor equal to 1.0 for normal-weight concrete or 
0.75 for lightweight concrete.



74  Reinforced concrete with FRP bars: Mechanics and design﻿

4.2.3  Cross-sectional properties

The analysis of a reinforced concrete frame should reflect the potential for 
cracking and inelastic action for each member. However, this approach would 
require selecting different stiffnesses for all members. For this reason, when 
analyzing concrete frames, the gross sectional properties are generally used.

Transformed section. The elastic-beam theory of de Saint-Venant can 
be applied to FRP reinforced concrete mechanics only if the FRP concrete 
section is transformed to an all-concrete section (this is generally preferred 
to an all-FRP section) [1]. In fact, an area of FRP bars equal to Af can 
be considered equivalent to an area of concrete equal to nf Af , where the 
modular ratio, nf, is equal to

	 n
E

E
f

f

c

= 	 (4.7)

When computing the neutral axis depth below the top fiber of the cross-
section, cg, of uncracked reinforced concrete, the contribution of the FRP 
reinforcement can, generally, be neglected. In this case, the neutral axis 
intersects the geometrical centroid of the gross section.

In a cracked section, the neutral axis intersects the mechanical centroid 
of the section. For a rectangular cross section, the cracked neutral axis 
depth, ccr, can be computed as follows:

	 2
2

c kd n n n dcr f f f f f f f f( )( )= = ρ + ρ − ρ ⋅ 	 (4.8)

where ρf is the FRP reinforcement ratio and df is the effective depth of the 
FRP reinforcement.

T-sections. A T-beam section is generally considered when a beam is 
built integrally with the slab. ACI 318-11 defines the effective width of the 
slab, beff, acting as a T-beam flange as the minimum of: (a) one-quarter of 
the beam span length, (b) eight times the slab thickness, or (c) one-half the 
clear distance to the next beam.

For a spandrel beam (or reverse L-beam), ACI 318-11 mandates the effec-
tive flange width, beff, not to exceed: (a) 1/12 of the beam span length, (b) six 
times the slab thickness, or (c) half the clear distance to the next beam.

COMMENTARY

Equation (4.8) can be used for T-sections when the cracked neutral axis is 
included within the slab thickness, tslab  , which occurs when the following con-
dition applies:

	 b
t

n A d teff
slab

f f f slab≥ −
2

( )
2

	 (4.9)
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4.3  INITIAL MEMBER PROPORTIONING

For steel reinforced concrete flexural members, ACI 318-11 mandates mini-
mum values of member thickness that satisfy given deflection-to-span ratios. 
The applicability of this approach for FRP reinforced concrete members is 
still under scrutiny. However, ACI 440.1R-06 [4] recommends minimum 
thickness values for indirect control of deflections in one-way slabs and 
beams, which can be used for initial member proportioning only (Table 4.1).

Deflections in FRP RC members tend to be larger than in their steel RC 
counterparts, due to the lower tensile modulus of elasticity of commercially 
available FRP reinforcing bars. For this reason, FRP reinforced members are 
generally subjected to higher depth requirements for comparable span lengths.

The values in Table 4.1 were derived by Ospina, Alexander, and Cheng 
[5] based on the following equation:

	
48
5

1

1 max

l
h K

k
lf

= η −
ε







∆



 	 (4.10)

where εf is the reinforcement tensile strain at midspan, h is the height of the 
cross section, k is the neutral axis depth to reinforcement depth ratio at mid-
span, η is the reinforcement depth to member thickness ratio, and Κ1 is a 
constant that depends on the loading and support conditions. For example, Κ1 
can be taken as 1.0, 0.8, 0.6, and 2.4 for uniformly loaded, simply supported, 
one-end continuous, both-ends continuous, and cantilevered spans, respec-
tively. The ratio η may be assumed to range between 0.85 and 0.95.

COMMENTARY

When a linear distribution of the strain over a member’s cross section is 
assumed, the maximum immediate elastic deflection at midspan, Δmax, of a 
one-way flexural member under uniform distributed load can be computed as

	 ∆ = ⋅K
Ml
E I

5
48 c

max 1

2

	 (4.11)

Table 4.1  Recommended minimum thickness of one-way slabs and beams

Minimum thickness, h

Simply supported One-end continuous Both-ends continuous Cantilever

One-way slabs l/13 l/17 l/22 l/5.5
Beams l/10 l/12 l/16 l/4
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where M is the maximum positive moment, l is the span length, Ec is the mod-
ulus of elasticity of concrete, and I is the moment of inertia. The term M/EcI 
is the curvature of the cross section at midspan, χm,cr , which can be computed 
as follows when the elastic cracked conditions are assumed:

	 χ = ε
−d k(1 )

m cr
m

m
. 	 (4.12)

where εm is the reinforcement tensile strain at midspan, d is the flexural 
reinforcement effective depth, and km is the neutral axis depth to reinforce-
ment depth ratio at midspan. Rearranging terms and setting η = d/h, the 
maximum deflection at midspan to span length ratio, Δm/l, is given by the 
following equation:

	 ∆ = ⋅ η ⋅ ε
−

⋅
l

K
K

l
h

5
48 1

m m

m

1 	 (4.13)

where η may be assumed to range between 0.85 and 0.95. Equation (4.13) 
can be used to estimate the minimum thickness of the flexural member by 
posing Δm = Δmax.

In the attempt to account for the effect of tension stiffening of concrete, 
Ospina and Gross [6] rewrote Equation (4.13) in the following fashion:

	 ∆ = ⋅
η

⋅ ⋅ − ξ χ + ξ ⋅ χ l
K

l
5
48

(1 )m
m g m cr

1
, ,

	 (4.14)

where χm,g is the cross-sectional curvature at midspan for uncracked condi-
tions that can be computed as follows:

	 χ = f
E h
2

m g
ct

c
, 	 (4.15)

ξ is a constant to allow expressing the maximum deflection as a function of 
the average curvature instead of the curvature at a cracked cross section and 
its expression is reported in the following:

	 ξ = − ββ 





M
M

1 cr
1 2

2

	 (4.16)

where β1 is a factor accounting for bond quality of the bars (β1 = 1 for high 
bond bars), β2 is a factor representing the influence of the load duration and 
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4.4  FRP DESIGN PROPERTIES

The FRP tensile properties to be used in design equations are reduced by 
ACI 440.1R-06 to include the detrimental effect of long-term exposure to 
various environments. The design tensile strength, ffu, and the design ulti-
mate tensile strain, εfu, are calculated as

	 *f C ffu E fu= 	 (4.18)

and

	 *Cfu E fuε = ε 	 (4.19)

where CE is the environmental reduction factor, and ffu
*

and fuε*
are the 

manufacturer’s guaranteed tensile strength and ultimate strain, respec-
tively, and are defined as the mean value of the sample population minus 
three times the standard deviation. The values of CE recommended by ACI-
440.1R-06 are summarized in Table 4.2.

repetition (β2 = 1 for first loading), and Mcr is the cracking moment. Imposing 
Ec = 57,000√(f ′c) and fr = 7.5√(f ′c) (in SI units: 4700√(f ′c and 0.62√(f ′c)), and rear-
ranging terms, the maximum deflection can be written as follows:
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Posing Δm = Δm,limit in Equation (4.17), the minimum thickness of the flexural 
member that satisfies the deflection requirement can be estimated.

Table 4.2  Environmental reduction factor for various fibers and exposure conditions

Exposure condition Fiber type CE

Concrete not exposed to earth and weather Carbon 1.0
Glass 0.8
Aramid 0.9

Concrete exposed to earth and weather Carbon 0.9
Glass 0.7
Aramid 0.8
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Although the effect of temperature is included in the values of CE, ACI 
440.1R-06 does not recommend using FRP bars in environments with a 
service temperature higher than the glass transition temperature (Tg) of the 
resin used for their manufacturing.

4.5  BENDING MOMENT CAPACITY

As it has been demonstrated experimentally, irrespectively of the reinforc-
ing material used (steel or FRP), the basic assumptions for the flexural 
theory of RC members analyzed using the strength design method can be 
summarized as follows:

	 1.	Plane sections remain plane; this means that shear deformations can 
be disregarded.

	 2.	Perfect bond exists between reinforcing bars and the surrounding 
concrete; in other words, the strain in the reinforcement is equal to 
the strain in the concrete at the same level.

	 3.	Stresses in both concrete and reinforcement are computed based on 
the strain level reached in each material using the appropriate con-
stitutive laws for concrete and reinforcing bars. In particular, for the 
case of concrete, up to the serviceability limit state, a linear–elastic 
relationship will be used; past the linear elastic point up to crushing, 
either the Todeschini model or the equivalent stress block can be used. 
Regardless of the limit state considered, steel and FRP reinforcing 
bars are considered elastic–plastic and linear–elastic, respectively.

Although not formally needed, the following two assumptions are usually 
introduced to simplify the calculation process with little loss in the accu-
racy of the final results:

	 4.	The tensile strength of the concrete is neglected.
	 5.	The concrete is assumed to fail when it reaches a maximum preset 

compressive strain.

The basic safety relationship at the ultimate limit state can be written as

	 ϕMn ≥ Mu	 (4.20)

In Equation (4.20), ϕMn is the factored bending moment capacity of the 
member and is a function of the member geometry, the location of the 
reinforcement, and the mechanical properties of the materials; the term 
“factored” means that the nominal calculated bending moment capacity 
has been reduced by the safety factors associated with the materials or the 
failure mode depending upon the calculation procedures followed.

The second term of Equation (4.20), Mu, is the factored bending moment 
resulting from the analysis of the member and is a function of the member 
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geometry, stiffness and boundary conditions, and the applied loads; the 
term “factored” means that the calculated bending moment associated to a 
specified loading condition has been amplified by the safety factors related 
to the acting loads. Mu comes from the structural analysis performed on 
the system being studied.

4.5.1  Failure mode and flexural capacity

Balanced failure. Both concrete crushing and FRP rupture are possible 
failure modes. When the failure mode is controlled by the simultaneous 
occurrence of concrete crushing and FRP rupture, it is termed “balanced 
failure.” The neutral axis position for balanced failure, c = cb, can easily be 
determined from strain compatibility as follows (Figure 4.2):

	 c db
cu

cu fu

= ε
ε + ε

	 (4.21)

where εfu is the design tensile strength of the FRP reinforcement.
The position of the neutral axis corresponding to balanced failure is used 

as the basis to establish the member failure mode. When the position of 
the neutral axis at ultimate, c, is larger than cb, the failure is controlled by 
the crushing of the concrete; conversely, when c is less than cb, the failure is 
initiated by rupture of the FRP reinforcement.

COMMENTARY

Traditional steel reinforced flexural members are designed to display con-
crete failure when the strain in the steel has passed its yielding limit. In this 
way, the member is said to be “under-reinforced.” Such behavior corresponds 
to a ductile failure mode with signs of the incipient collapse in the form of 
extensive cracking and large deflections visible on the flexural member.
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Figure 4.2 � Failure mode regions for FRP RC flexural members.
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Figures 4.3(a) and (b) show the normalized bending moment (defined as 
the ratio of the bending moment acting on the beam at a given load stage, 
M, to the member flexural capacity at the ultimate limit state, Mn) and the 
normalized neutral axis depth (defined as the ratio of the neutral axis depth 
[axis of zero strain] measured from the extreme compression fiber, c, to the 
beam’s depth, h) plotted as a function of the beam curvature defined as χ = 
ε/y, where ε represents the strain at a distance y from the neutral axis at the 
load stage considered.

Several considerations can be drawn by the observation of such dia-
grams. Line OA in Figure  4.3(a) represents all points where the beam is 
uncracked and both bending moment and neutral axis depth can be found 
without appreciable error by neglecting the presence of the steel reinforc-
ing bars. In this case, the beam can be considered homogeneous with the 
neutral axis located at c = h/2 (therefore, the normalized neutral axis depth 
= h/2/h = 0.5). At point A, the beam cracks; from point A to B, the neutral 
axis depth and the stiffness of the member rapidly decrease to a point of 
stability. At this stage, the steel is linear–elastic and the concrete is practi-
cally linear–elastic. In this curvature range, corresponding to service condi-
tions, the internal moment magnitude increases because of an increase in 
the tensile and compressive forces. At point B, the steel reaches the yield 
point. From points B to C, the steel is yielded and the concrete gradually 
moves to the inelastic and postpeak range. The neutral axis position further 
shifts toward the top fiber as the internal moment magnitude increases (due 
to an increase of the internal couple arm), while the total compressive and 
tensile forces remain constant. At point C, the compressive strain reaches 
the value of εcu, which corresponds to the assumed concrete crushing, and 
failure occurs.

If the steel does not yield (as in the case of Figure 4.3b), the neutral axis 
after cracking has occurred moves downward toward the tensile side of the 
beam as the increase of moment is given by the increase of the compressive 
and tensile forces. From this last figure, it is clear how the neutral axis 
position for “over-reinforced” beams sways around the mid-depth of the 
beam.

The behavior of FRP RC members is affected by the presence of reinforce-
ment that does not yield and is to be considered liner–elastic up to failure. 
As opposed to traditional RC structures, where failure is always controlled 
by crushing of the concrete before or after yielding of the steel, members 
reinforced with FRP bars may display either concrete crushing or FRP rup-
ture as the governing failure mode (Figure  4.4). As a result, the  material 
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(concrete or FRP) that first reaches its ultimate strain is the one that dic-
tates the member failure mode.

Similar considerations to what has been observed for steel RC members 
in Figure 4.3 may be provided here for members reinforced with FRP bars. 
With reference to Figure  4.4, line OA represents points where the beam 
is uncracked; in this range, the constituent materials are linear–elastic, the 
neutral axis depth is located at h/2, and the bending moment corresponding 
to the cracking of the concrete (point A) can be found based on the Navier’s 
equation as follows:

	 =M
f I
y

cr
r g

t

	 (4.22)

where yt is the distance from the centroidal axis of the gross section neglect-
ing the tensile reinforcement and Ig is the gross moment of inertia.

From point A to B, the beam is cracked; this range corresponds to service 
condition where the concrete is still a linear–elastic material. Such assump-
tion can be considered acceptable up to a maximum compressive strain in 
the concrete of 0.45·f ′c/Ec. In this curvature range, the stiffness of the beam 
greatly decreases as it is indicated by the slope of line AB (compare with line 
AB of Figure 4.3a) due to the reduced modulus of elasticity of FRP bars com-
pared to steel bars. From point B to C, as the member flexural capacity is 
approached, the neutral axis position remains basically constant (Figure 4.4a) 
or slightly changes direction and shifts downward (Figure 4.4b). This is neces-
sary to maintain the equilibrium of the horizontal forces: As the value of the 
internal tensile force increases, the total compressive force also needs to 
increase. At point C, the tensile strain in the FRP reaches its ultimate value 
and the failure is controlled by the rupture of the FRP bars (Figure  4.4a) 
or the maximum concrete compressive strain, εcu, is attained and the failure 
is controlled by the crushing of the concrete (Figure 4.4b).

The lack of yielding of the FRP reinforcement that produces an overall less 
ductile behavior of FRP RC members as compared to steel RC members must 
be compensated for with an increase in the safety factor used for design. This 
increased safety can take the form of more stringent strength-reduction fac-
tors or larger material safety factors depending upon the design methodology 
followed.

The moment-curvature diagram for the four beams shown in Figures 4.3 
and 4.4 is depicted in Figure 4.5. These diagrams are based on the material 
properties summarized in Table 4.3.
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When failure is initiated by the crushing of the concrete (c > cb), the 
stress distribution in the concrete can be approximated with the equivalent 
rectangular stress block having the parameters α1 and β1 defined below (see 
also Figure 4.2b): 

•	 α1 = 0.85 is the ratio of average stress of equivalent rectangular stress 
block to f ′c.

•	 β1 is the factor taken as 0.85 for concrete strength f ′c up to and including 
4000 psi (28 MPa). For strength above 4000 psi (28 MPa), this factor 
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is reduced continuously at a rate of 0.05 per each 1000 psi (7 MPa) of 
strength in excess of 4000 psi (28 MPa), but is not taken less than 0.65.

The strain in the FRP reinforcement is less than that corresponding to 
the bar rupture and it is determined from strain compatibility as follows

	
d c

c
f cu fuε = − ε ≤ ε 	 (4.23)
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The result of the compressive and tensile forces in both concrete and FRP 
reinforcement can be expressed as

	 1 1C f cbc= α ′β 	 (4.24)

	 T = Af Ef εf	 (4.25)

where b is the width of the flexural member. By substituting Equation 
(4.23) into Equation (4.24) and imposing the equilibrium condition, C = T, 
the following second-order equation is derived:

	 αc2 + βc + γ = 0	 (4.26)
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Table 4.3  Material mechanical properties

Material Value

Concrete
•	 Design compressive strength, f ′c, psi (MPa) 4,000 (27.6)
•	 Modulus of elasticity, Ec , ksi (GPa) 3,605 (24.9)
•	 Modulus of rupture, fr , psi (MPa) 474 (3.3)
•	 Compressive strain at crushing, εcu 0.003

•	 Stress block parameter, β1 0.85
Steel

•	 Design yield strength, fy , ksi (MPa) 60 (413.7)
•	 Modulus of elasticity, Es , ksi (GPa) 29,000 (199.9)
•	 Design yield strain, εy 0.00207

FRP
•	 Design tensile strength, ffd     , ksi (MPa) 140 (965)
•	 Modulus of elasticity, Ef , ksi (GPa) 5,000 (34.5)
•	 Design tensile strain, εfd 0.028
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where the coefficients of the unknown term, c, are

	 α = α ′β1 1f bc

	 β = Af Ef εcu	

	 γ = Af Ef εcud	 (4.27)

The only solution with physical meaning of Equation (4.26) gives the 
position of the neutral axis as follows:
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The nominal bending moment capacity of the member is calculated as
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Figure 4.6 shows an example of glass fiber-reinforced polymer (GFRP) 
RC type slab tested under four-point bending. Figure 4.6(a) depicts the fairly 
large deflection while Figure 4.6(b) portrays the compression failure mode.

FRP rupture: rigorous approach. When failure is initiated by rupture of 
the FRP reinforcement (c < cb), the compressive strain in the concrete has 
not reached the ultimate value εcu. Todeschini et al. [3] developed the stress-
block approach reported in Figure 4.2(c) for concrete columns reinforced 
with high-strength steel that can be used for any εc value assumed by the 
compressive strain in the concrete and calculated using strain compatibility 
as follows:

	
c

d c
c fu cuε =

−
ε ≤ ε 	 (4.30)

The result of the compression and tensile forces in both concrete and 
FRP reinforcement can be expressed as

	 0.85
/

in 1 /
2

C f
bc

c
c o

c o( )= ′
ε ε

+ ε ε  	 (4.31)

	 T = Af ffu	 (4.32)

where εo represents the concrete strain at maximum strength as determined 
from cylinder tests calibrated based on the results reported by Todeschini 
et al. [3] as
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Since a closed-form solution of the equation obtained by replacing 
Equations (4.30) and (4.33) into Equation (4.31) and imposing the equi-
librium condition, C = T, is impractical, a numerical procedure may be 
adopted by assuming tentative values for the neutral axis depth, c, until 
the equilibrium condition obtained by equating Equations (4.31) and 
(4.32) is met.

(a) Slab under load showing the large de�ection

(b) Compression failure

Figure 4.6 � Testing of GFRP-RC slab at the Universitá di Napoli–Federico II, Naples, Italy. 
(Courtesy of Prof. Andrea Prota.)
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Once the position of the neutral axis, c, is known, the nominal bending 
moment capacity can be calculated as

	 Mn = Af ffu (d − c + ξ)	 (4.34)

where ξ represents the distance from the neutral axis to the centroid of the 
stress block (Figure 4.2c) determined as
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with εc/εo is in radians when computing tan–1(εc/εo).
Available guidelines on concrete members reinforced with FRP bars 

allow for the use of simplified approaches to compute the bending moment 
capacity with little loss in the accuracy of the final result.

FRP rupture: the ACI 440.1R-06 approach. ACI 440.1R-06 allows 
using the equivalent rectangular stress block also for the case of FRP rup-
ture irrespectively of the maximum strain reached by the concrete in com-
pression. This means that the compression resultant in the concrete, C, may 
be expressed as

	 = α ′β1 1C f bcc 	 (4.36)

where α1 is 0.85, β1 is the parameter of the rectangular stress block, and c is 
the position of the neutral axis at failure. The force in the FRP reinforce-
ment can be evaluated as

	 T = Af εfu Ef	 (4.37)

where Af is the total FRP area; εfu and Ef represent the design tensile strain 
and modulus of elasticity of the FRP reinforcement, respectively.

The proposed equation for the bending moment capacity is expressed as 
follows:
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1 	 (4.38)

Note that ACI 440.1R-06 assumes a conservative estimation of 
the bending moment capacity by replacing the neutral axis depth 
at failure  with the value at balanced condition, c = cb, expressed by 
Equation (4.21).

Figure 4.7 shows an example of an FRP RC beam tested under four-point 
bending. Figure 4.7a depicts the crack pattern while Figure 4.7b portrays 
the tensile failure mode.
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COMMENTARY

When FRP rupture controls failure, two approaches have been investigated in 
order to improve the ductility of FRP RC flexural members. The first is to use 
hybrid FRP bars fabricated by combining two or more different fiber types to 
simulate the elastic–plastic behavior of the steel bars [7,8]. This approach has 
shown some success in research studies but has resulted in limited practical 
applications because of the complicated and costly manufacturing process of the 
hybrid bars [9]. The second approach is to improve the pseudoductility of the 
concrete by adding steel or polypropylene fibers to the concrete mixture [9,10].

(a) Immediately prior to failure with marked-up cracks 

(b) Detail of failed GFRP bar in tension

Figure 4.7 � Testing of GFRP-RC beam at the Universitá di Napoli–Federico II, Naples, 
Italy. (Courtesy of Prof. Andrea Prota.)
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4.5.2 � Nominal bending moment capacity 
of bond-critical sections

One of the main assumptions at the basis of reinforced concrete mechan-
ics is a “perfect” bond between the reinforcing bars and the surrounding 
concrete. Therefore, adequate embedment length of the FRP reinforcement 
is required to avoid bond failure. ACI 440.1R-06 defines as bond critical 
those sections where the maximum achievable stress in the FRP reinforce-
ment is limited by the following equation:

	 f
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where le is the length of FRP bar embedded in concrete, dd is the bar diam-
eter, C is the lesser of the cover to the center of the bar or one-half of the 
center-on-center spacing of the bars being developed, and α is a factor to 
account for the bar location. α is taken equal to 1.5 for bars with more 
than 12 in. (300 mm) of concrete cast below, otherwise it is taken equal to 
1.0. In other words, the developable FRP bar stress, ffe, cannot be smaller 
than the design FRP tensile stress, ff ≤ ffu, as defined in Equation (4.40), to 
prevent bond failure. Otherwise, corrective measures must be taken, such 
as increasing the embedment length, increasing the number of bars, replac-
ing the planned bars with smaller diameter ones for the same reinforcement 
area, or recomputing the nominal moment capacity based on bond strength 
limitation.

When bond limits the stress that can be developed in reinforcement, the 
two possible failure modes are concrete crushing or bond failure. The fail-
ure mode is concrete crushing when the condition stated in Equation (4.40) 
is verified:
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In this case, the nominal bending moment capacity can be computed as 
per ACI 440.1R.06 Equation (8.5) reported below:
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Conversely, the bending moment capacity for failure controlled by bond 
can be computed based on the following equation:

	 = − β



2

1M A f d
c

n f fe f
b 	 (4.42)

ACI 440.1R-06 recommends avoiding embedment lengths shorter than 
20db, and limiting the ratio C/db to 3.5 to prevent pullout failure. The factor 
α is generally taken equal to 1.5 for bars with more than 12 in. (305 mm) 
of concrete cast below them (“top bars”), or 1.0 when the bars are in the 
bottom 12 in. (305 mm) of the formwork when the concrete is cast. When 
there is insufficient embedment length to develop full anchorage of a bar, a 
bent bar may be used.

4.5.3  Minimum FRP reinforcement

ACI 440.1R-06 prescribes that at every section of a flexural member where 
tensile reinforcement is required by analysis, Af provided should not be less 
than the area given by

	 A
f

f
b df

c

fu
w4.9=

′
	 (4.45)

COMMENTARY

Equation (4.39) is based on the work by Wambeke and Shield [11]. They 
reviewed a database of 269 beam bond tests, including beam-end tests, notch-
beam tests, and splice tests. The majority of the bars included in the study 
were GFRP. A linear regression of the normalized average bond  stress, u, 
versus the normalized cover and embedment length was performed  and 
resulted in the following relationship:
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4.0 0.3 100
c b

b

e′
= + + 	 (4.43)

By considering the free-body diagram of an FRP bar of diameter db and area 
Af,bar, embedded in concrete for a length equal to le, the equilibrium of forces 
was written as follows:

	 le πdbu = Af,bar ff	 (4.44)

Wambeke and Shield [11], then, solved Equations (4.43) and (4.44) for the 
achievable bar stress given the existing embedment length and cover obtain-
ing Equation (4.3).
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	 A
f

f
b df

c

fu
w[or 0.41=

′
 in SI units]

and not less than (330 / ffu)bwd [or (2.3 / ffu) bwd in SI units], where bw and 
d are the cross-section web width and the distance from the extreme com-
pression fiber to the centroid of tension reinforcement, respectively.

It has been shown that the requirements of Equation (4.45) may become 
unrealistic for large concrete cross sections. It is therefore suggested that 
Equation (4.45) need not be applied in a member where at every cross sec-
tion, the area of tensile reinforcement provided is at least one-third greater 
than that required by analysis.

COMMENTARY

Traditional steel RC flexural members designed in compliance with code pro-
visions must exhibit additional strength capacity beyond concrete cracking. 
This requirement is to prevent a brittle failure. Provisions for a minimum 
amount of reinforcement were originally established for members that, for 
architectural or other reasons, were larger in cross section than required 
by strength. If the amount of tensile reinforcement is too small, the ultimate 
bending moment capacity computed using the cracked section analysis may 
be less than that of the corresponding concrete section computed from its 
modulus of rupture, neglecting the presence of the existing reinforcement 
(Equation 4.22).

Similar considerations may be applied to FRP reinforced concrete members 
designed to fail by FRP rupture to prevent failure upon concrete cracking; for 
failures controlled by concrete crushing, the amount of FRP reinforcement 
automatically satisfies the minimum requirement.

4.5.4  Maximum FRP reinforcement

Provision 10.3.5 in ACI 318-11 limits the minimum tensile strain at failure 
in the longitudinal steel reinforcement of flexural members to a value of 
0.004, which corresponds to roughly twice the yield stain of a Grade 60 
steel (420 MPa). This strain limit is to ensure that the failure of the steel-RC 
structural member will always be ductile. Even though this limit loses rel-
evance in the case of FRP reinforcement, it may be argued that irrespective 
of the fact that FRP bars do not yield, this strain threshold would at least 
ensure some visible level of distress in terms of deflection and crack width 
for a flexural member approaching failure. According to this provision, 
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the maximum reinforcement ratio, ρmax, for an FRP-RC member in flexure 
would be:

	
ρ = β ′

+
= β ′f

E
f
E

c

f

c

f

0.85
0.004

0.003
0.003 0.004

91.1max 1 1

It should be noted that this value of ρmax cannot be physically attained in 
GFRP RC flexural members as it would be impossible to fit the many bars 
in a cross section.

4.5.5  Examples—Flexural strength

The examples presented here (US customary only) are intended to show 
an application of the algorithms discussed in the preceding sections. More 
exhaustive design examples are given in Chapters 6, 7, and 10 that deal 
with one-way slab, beam, and isolated footing, respectively.

Design equations aim at (a) calculating the flexural strength of an existing 
beam or (b) calculating design parameters such as size and reinforcement 

COMMENTARY

Considering a worst case scenario of low compressive strength concrete, 
compute ρmax and the corresponding number of bars for a slab and a beam 
using the following data:

Slab Beam

Size: Size:
b = 12.0 in.
d = 6.0 in.

b = 12.0 in.
d = 24.0 in.

Concrete:
f ′c = 3.0 ksi
β1 = 0.85

Reinforcement:
Ef = 6,000 ksi
ρmax = 0.387
#6 = 0.44 in.2 #9 = 1.00 in.2

Solution: Solution:
Af = 2.78 in.2
Or 6#6 bars which would barely fit 
in the given width (clear spacing of 
1.25 in.)

Af = 11.15 in.2
Or 11#9 bars which would not fit in the 
given width
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area for an applied bending moment. A critical parameter in all these 
calculations is the tension reinforcement index, ωf, defined as

	 ω = ρ
′

=
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In case a, ωf is known and the strength can be defined as a function of it. 
In case b, unknown parameters are derived as functions of ωf that may be 
known or unknown at first. Another dimensionless parameter is defined as
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Case a—calculation of nominal flexural strength of an existing member
(a1) Failure is initiated by concrete crushing if
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In this case the stress level in the reinforcement can be calculated as
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And the nominal flexural strength is
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where

	 ff f′ω = ω

Example 4.1

Calculate the nominal flexural strength of the following beam:

Concrete: f ′c = 4.0 ksi
β1 = 0.85

Reinforcement: ffu = 60 ksi
Ef = 6,000 ksi
εfu = 0.010
Af = 4#10 = 5.08 in.2

Size: b = 16.0 in.
h = 25.0 in.
c = 3.0 in.
d = h−c = 22.0 in.

Continued



94  Reinforced concrete with FRP bars: Mechanics and design﻿

Solution: e = 3.333
ωf = 0.2165
ωfb = 0.1667 < ωf : Failure by concrete crushing
f = 0.862
ω′f = 0.1839
Mn = 5,145 kip-in. = 428.8 ft-kip

Example 4.2

Calculate the nominal flexural strength of the beam in Example 4.1, if 
f ′c = 5.0 ksi (β1 = 0.80).

Solution: e = 3.333
ωf = 0.1732
ωfb = 0.1569 < ωf : Failure by concrete crushing
f = 0.946
ω′f = 0.1638
Mn = 5,731 kip-in. = 477.6 ft-kip

This example demonstrates that when failure is governed by concrete 
crushing, the flexural strength of FRP RC members is sensitive to the 
strength of concrete. This is in contrast to the general notion about 
the traditional steel RC flexural members, whose strength is largely 
perceived to be independent of the concrete strength.

Example 4.3

Calculate Mnb, the nominal flexural strength of the beam in Example 
4.1, if the area of its reinforcement is changed so that concrete crushing 
and FRP rupture occur simultaneously (balanced failure).

Solution: Mnb = Mn(ωf = ωfb)
f = 1.0
ω′f = ωfb = 0.1667
Mnb = 4658.1 kip-in. = 388.2 ft-kip
Afb = 3.91 in.2

(a2) Failure is initiated by FRP rupture if

	 ω ≤ ω = β
+ e

f fb
0.85
1

1
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In this case two methods are available to calculate the nominal strength:

	 1.	Exact method. The equivalent stress block for concrete must be 
calculated. The first step is to compute maximum strain of con-
crete corresponding to f ′c as

	
f
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c
c

c

1.7′ε = ′

		  Then, an initial c, the depth of the compressive part of the 
section, is assumed and the strain on the compressive edge of the 
beam is calculated as
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		  The parameters regarding the intensity (α1) and depth of the 
stress block (β1) are related as
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	 A new value for c can be calculated as
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		  The previous three steps are repeated until convergence is 
achieved. Then:
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		  Selecting an appropriate value for the first guess of c can expe-
dite the procedure. Noting that for this mode of failure,

	 c c
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b

		  cb is the compressive depth of the section corresponding to the 
balanced failure. Therefore, observing the preceding condition 
in selecting c in the first iteration is highly recommendable.

Figure 4.8 shows an example of FRP RC large beam tested under four-
point bending. Figure 4.8(a) depicts the crack pattern while Figure 4.8(b) 
portrays the tensile and compressive failures that happened simultane-
ously (balanced failure).
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Example 4.4

Calculate the nominal flexural strength of the beam in Example 4.1, if 
Af = 2#10 = 2.54 in.2.

Solution: ωf = 0.1082
ωfb = 0.1667 > ωf : Failure by FRP rupture
Ec (ksi) = 57√f ′c (psi) = 3605 ksi
ε′c = 0.00189
cb = 5.08 in.

Iteration 1: c = 4.0 in. : First guess
εc = 0.00222
α1β1 = 0.715
c = 3.3 in.

Continued

(a) Immediately prior to failure with marked-up cracks

(b) Detail of failed concrete in compression and GFRP bar in tension

Figure 4.8 � Testing of GFRP-RC beam at Missouri University of Science and Technology, 
Rolla, Missouri. (Courtesy of Prof. Fabio Matta.)
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Iteration 2: c = 3.3 in.

εc = 0.00176
α1β1 = 0.643
c = 3.7 in.

Iteration 3: c = 3.7 in.
εc = 0.00202
α1β1 = 0.688
c = 3.5 in. : Convergence is achieved
β1 = 0.759
α1 = 0.906
Mn = 3,151 kip-in. = 262.6 ft-kip

	 2.	Approximate method
		  From the previous example it is obvious that the exact value 

of c is not an important factor in the overall accuracy of the 
solution. Therefore, when FRP rupture governs the failure, it is 
allowed to assume c = cb conservatively, which results in

	 M f bdn f
fb

c1
1.7

2= ω − ω





 ′

Example 4.5

Calculate the nominal flexural strength of the beam in Example 4.4, 
using the approximate method.

Solution: ωf = 0.1082
ωfb = 0.1667 > ωf : Failure by FRP rupture
Mn = 3,023 kip-in. = 251.9 ft-kip

Example 4.6

Repeat Example 4.5 with f ′c = 5.0 ksi.

Solution: ωf = 0.0866
ωfb = 0.1569 > ωf : Failure by FRP rupture
Mn = 3,044 kip-in. = 253.6 ft-kip

This example shows that, in the FRP rupture mode, the strength of 
concrete has little effect on the flexural strength of the member.

Example 4.7

In previous examples, the assumed rupture stress of the FRP rein-
forcement is equal to the yielding stress of ordinary reinforcing steel 
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(ffu = fy = 60 ksi). Compare the nominal strength of the beams in previ-
ous examples with their steel reinforced counterparts.

Solution: Example FRP RC Steel RC*

1: �Concrete 
crushing

Mn = 428.8 ft-kip Mn = 487.6 ft-kip

2: �Concrete 
crushing

Mn = 477.6 ft-kip Mn = 501.9 ft-kip

3: �Balanced 
failure

Mnb = 388.2 ft-kip Mnb = 826.1 
ft-kip**

4: FRP rupture Mn = 262.6 ft-kip Mn = 261.6 ft-kip
5: FRP rupture Mn = 251.9 ft-kip Mn = 261.6 ft-kip
6: FRP rupture Mn = 253.6 ft-kip Mn = 265.2 ft-kip

*	� Note that for steel RC beams in all cases Mn ≤ Mnb and therefore all 
beams fail in the same mode of steel yielding followed by concrete 
crushing.

**	�Mnb for steel RC has a reinforcement ratio 2.6 times greater than 
that of GFRP RC.

From this comparison, it also appears that FRP reinforcement is at its 
most effective when the failure is governed by FRP rupture. However, 
for reasons of safety and serviceability, which are elaborated in their 
respective chapters, this is not always the most desirable mode of failure.

Case b—calculation of design parameters of a rectangular flexural member
(b1) Applied moment and dimensions are known, reinforcement area is 

unknown:
This is probably the most common case, as in order to perform the 

structural analysis and obtain the internal moments, it is normally 
required to assume the dimensions of the members. Since the reinforce-
ment area and subsequently the failure mode are not known before-
hand, the formulae for Case a need to be altered as
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Example 4.8

Design a beam for the nominal flexural strength of Mn = 5400 kip-in. 
= 450 ft-kip. Other properties are as follows:

Concrete: f ′c = 4.0 ksi
β1 = 0.85

Reinforcement: ffu = 60 ksi
Ef = 6000 ksi
εfu = 0.010

Size: b = 16.0 in.
h = 25.0 in.
c = 3.0 in.
d = h−c = 22.0 in.

Solution: m = 0.2051
ω′f = 0.1972

e = 3.333
f = 0.799 < 1: Failure by concrete crushing
ωf = 0.2468
Af = 5.79 in.2 : Use 5#10

Example 4.9

Design a beam for the nominal flexural strength of Mn = 3600 kip-in. 
= 300 ft-kip. Other properties are similar to those in Example 4.8.

Solution: m = 0.1367
ω′f = 0.1255
e = 3.333
f = 1.427 > 1: Failure by FRP rupture
ωfb = 0.1667
ωf = 0.1289
Af = 3.02 in.2 : Use 3#9

(b2) Applied moment and the stress level in reinforcement are 
known; dimensions and the reinforcement area are unknown:

In this case, if a predetermined value is assigned to the stress level 
(f < 1), then:

	
ef

f
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The reinforcement area and the dimensions can be calculated from
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Example 4.10

The calculated stress level in Example 4.8 is f = 0.799 ≈ 0.80. Repeat the 
example for the stress levels of f = 0.90 and f = 0.70. Assume that the 
effective depth of the beam, d, is unknown but the width of the beam is 
unchanged (b = 16.0 in.).

Solution: e = 3.333 f = 0.90 f = 0.80 f = 0.70
ω′f = 0.1806 ω′f = 0.1976 ω′f = 0.2168
ωf = 0.2007 ωf = 0.2470 ωf = 0.3097
bd2 = 8362 in.3 bd2 = 7752 in.3 bd2 = 7138 in.3

d = 22.9 in. d = 22.0 in. d = 21.1 in.
Af = 4.89 in.2 Af = 5.80 in.2 Af = 6.98 in.2

Use 4#10 Use 5#10 Use 6#10

As expected, the stress level decreases if the required reinforcement 
area increases or the effective depth decreases.

(b3) Applied moment and reinforcement ratio are known; dimen-
sions are unknown:

If, for practical reasons or to impose a certain mode of failure, a 
predetermined reinforcement ratio is considered, then the design pro-
cedure is almost identical to Case a.

If ωf ≥ ωfb, the failure is governed by concrete crushing and

	

1
3.4

1

2
1

1

f
f
f

e

e
f

fu

f= =
+ β

ω
−

≤

	 ff f′ω = ω

	 1
1.7

2bd
M

f f

n

f
c

=
′ω −

′ω





′

Otherwise, the failure is governed by FRP rupture and
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Example 4.11

The calculated ratio in Example 4.8 is ρf = 1.65%. Repeat the example 
for the reinforcement ratios of ρf = 1.0% and ρf = 2.0%. Assume that 
the effective depth of the beam, d, is unknown but the width of the 
beam is unchanged (b = 16.0 in.).

Solution: ωb = 0.1667 ρf = 1.0% ρf = 1.65% ρf = 2.0%
ωf = 0.150 ωf = 0.2475 ωf = 0.300
FRP rupture Concrete 

crushing
Concrete 
crushing

f = 1.00 f = 0.798 f = 0.713
— ω′f = 0.1975 ω′f = 0.2139

bd2 = 9978 in.3 bd2 = 7736 in.3 bd2 = 7218 in.3

d = 25.0 in. d = 22.0 in. d = 21.2 in.
Af = 4.0 in.2 Af = 5.81 in.2 Af = 6.80 in.2

Use 4#9 Use 5#10 Use 6#10

4.6  STRENGTH-REDUCTION FACTORS FOR FLEXURE

4.6.1  ACI 440.1R-06 approach

The relationship suggested by ACI 440.1R-06 for the strength-reduction 
factor shown in Figure 4.9 is given in the following equation:
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Figure 4.9 � Strength-reduction factor as per ACI 440.1R-06.
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where ρf = Af  /bd and ρb represent the FRP reinforcement ratio and the FRP 
reinforcement ratio at balanced failure condition, respectively. The latter may 
be expressed as Afb/bd, where Afb represents the area of flexural reinforcement 
producing balanced failure. In such conditions, the result of compressive and 
tensile forces in both concrete and FRP reinforcement can be calculated as

	
0.85 1= ′β

= = ρ

C f c b

T A f bdf

c b

f fu b fub

	 (4.47)

where cb is the neutral axis depth at balance. Replacing the expression of cb 
from Equation (4.21) into Equation (4.47) and equating C = T, the follow-
ing relationship for ρb can be determined (note that εfu has been replaced 
with ffu/Ef):
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cu
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0.85 1ρ = β ′ ε
ε +ε

	 (4.48)

For bond-critical sections, a ϕ-factor of 0.55 is recommended.

Similarly to ACI 318-11, in order to introduce a unified strength-reduc-
tion factor applicable to any member subject to flexure (e.g., columns 
for which ρb is not used), the failure mode is linked to the strain in the 
extreme tensile layer of reinforcement (εf in this study as opposed to εt in 

COMMENTARY

The reasoning behind the development of Equation (4.46) is presented here. If 
ρf ≤ ρb failure of the concrete cross section is initiated by the rupture of the FRP 
reinforcement; if ρf > ρb (or better, ρf > 1.4 ρb), failure is controlled by crushing 
of the concrete. The corresponding ϕ-factors are 0.55 and 0.65, respectively, 
and there is a linear transition between the two failure modes. The value 
of 1.4 was adopted to account for the variability of the concrete compres-
sive strength in ensuring the predicted failure (higher than specified concrete 
strength would produce FRP rupture). Such value was determined as 1/0.75 = 
1.333, rounded to 1.4, where the 0.75 coefficient represented the threshold 
set by ACI 318 prior to the 2002 edition of the code to ensure concrete crush-
ing after extensive steel yielding. The 0.65 value of the strength-reduction 
factor has been derived from the steel RC tradition to ensure the same struc-
tural reliability of under-reinforced systems [12]. The value of 0.55 is based 
on ACI 440 Committee’s consensus and represents a further reduction to 
penalize the less “ductile” behavior shown by FRP rupture.
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ACI 318-11). For fiber-reinforced concrete (FRC) RC flexural members, the 
relationship between reinforcing ratio and its tensile strain is
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And the strength-reduction factor can be reformulated as

	 fu
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0.55 0.30 0.25 0.65≤ φ = +
ε
ε

ε + ε
ε + ε

≤ 	 (4.51)

The strength-reduction factor expressed by Equation (4.51) is calibrated 
by targeting a level of reliability of at least 3.5. This target reliability, 
however, is not always obtainable even by ordinary steel RC flexural 
members [13].

4.6.2  New approach

An attempt by Jawaheri Zadeh and Nanni [14] to equalize the reliability 
indices of the two member types (steel RC vs. FRP RC) leads to ϕ with a 
lower limit of 0.70 (instead of 0.55) and an upper limit of 0.75 (instead of 
0.65). Based on a conservative interpretation of these values, a new ϕ may 
be formulated as

	 f

fu

0.65 1.15
2

0.75≤ φ = −
ε
ε

≤ 	 (4.52)

It should be noted that ACI 318-11 also imposes a strength-reduction fac-
tor of ϕ = 0.65 on compression-controlled sections, which is lower than the 
value (0.75) proposed by Equation (4.52). Nevertheless, a reliability-based 
calibration of the strength-reduction factors of steel RC members [13] con-
firms the adequacy of ϕ = 0.75. Figure 4.10 compares the two ϕ-factors 
(Equation 4.51 vs. Equation 4.52) for different levels of maximum tensile 
strain if εfu = 0.01.

In the design examples presented in Chapters 6–8 and 10, the values 
of ϕMn computed according to both methods (i.e., ACI 440.1R-06 and 
Jawaheri Zadeh and Nanni [14]) are shown.
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4.6.3  Examples—Flexural strength-reduction factor

Example 4.12

�Calculate the strength reduction factors and the ultimate strength of 
the cross sections in Examples 4.1–4.4.

Solution:

Equation (4.52) can be rewritten in terms of f, the stress level in FRP 
reinforcement, as 0.65 ≤ ϕ = 1.15-f/2 ≤ 0.75.

Example Stress level ϕ-factor Design strength

1: f = 0.862 ϕ = 0.719 ϕMn = 308.3 ft-kip
2: f = 0.946 ϕ = 0.678 ϕMn = 323.3 ft-kip
3: f = 1 ϕ = 0.65 ϕMnb = 252.3 ft-kip
4: f = 1 ϕ = 0.65 ϕMn = 170.7 ft-kip

COMMENTARY

Validation of strength-reduction factors can be attained by the reliability 
analysis that links the probability of failure to the load and safety factors, 
providing a basis for their calibration to achieve desired levels of safety. 
Conventionally, the reliability index is defined as an indicator of the prob-
ability of failure of a member with a resistance of R against the loads it may 
experience during its lifetime, Q, with both Q and R being random variables. 

0.50

0.55

0.60

0.65

0.70

0.75

0.80
φ

εfd

0.006 0.007 0.008 0.009 0.010

Jawaheri Zadeh and Nanni (2013) 

ACI 440.1R-06

Figure 4.10 � Comparison of the strength-reduction factors (εfu = 0.01).
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This, however, poses a few obvious difficulties due to the presence of load 
parameters in the calculations:

•	 Compared to resistance, statistical parameters of loading are far 
more difficult to obtain due to the vast number of factors affecting 
load.

•	 Load and resistance, being of different natures, follow different statisti-
cal distributions that, especially in the case of multiple load cases, make 
the problem of calculating the reliability index less tractable.

•	 Reliability analysis has to be performed for several types of loads and 
load combinations.

•	 For each load combination, covering the whole range of plausible load-
ings makes the calculations cumbersome, especially when more than 
two loads are involved.

The idea is to calibrate strength-reduction factors of the elements rein-
forced with new materials—not by setting them against loads, but rather 
by comparing them to elements of the same capacity that are made of bet-
ter established and better known materials. In other words, if the current 
strength factors for steel RC and its associated load factors are taken as a 
design standard (as there is little doubt about its performance when designed 
according to code), how should the safety factors of FRP reinforced members 
be proportioned so that the same level of safety is attained? This section 
shows how this concept applies to FRP RC and proposes revised strength-
reduction factors for use in design.

Comparative reliability. Assume two structural elements 1 (e.g., steel RC beam) 
and 2 (e.g., FRP RC beam) that are equal in their ultimate design capacity or:

	 ϕ1N1 = ϕ2N2	 (4.53)

where ϕi indicates the strength-reduction factor and Ni is the nominal 
strength (design strength) of each element (i = 1, 2). Resistance is a lognormal 
random variable defined by its mean, μ, and standard deviation, σ, or coef-
ficient of variation δ = σ/μ. These parameters can be obtained by testing. The 
nominal resistance (or capacity), N, is typically a conservative estimate below 
the mean value of resistance. The bias factor, λi, is defined as the ratio of the 
mean value, μi, to the nominal value, Ni, of a random variable—in this case, 
the resistance of elements 1 and, therefore,
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Table 4.4 (first row) shows these parameters for ordinary steel RC beams 
subject to the limit state of flexure.

For a structural element, safety is measured in terms of the reliability 
index, β, which is a function of the statistical parameters of the resistance of 
an element and the loads applied to it:

	 β = f [(ϕ, λR, δR), (γ, λQ, δQ)1, (γ, λQ, δQ)2, …, (γ, λQ, δQ)n ]	 (4.55)

where the index R denotes the resistance, Q the load, and 1 to n the differ-
ent types of loading that are applied to the element (dead, live, seismic, etc.) 
in the load combination for which the reliability index is calculated. γ1 to γ1 
are, then, the load factors that constitute the combination. Traditionally, the 
reduction factors are calibrated by targeting a preset level of reliability for all 
the design combinations:

	 β = β T	 (4.56)

Table 4.4 also shows this target reliability for ordinary RC beams subject to 
flexure.

The essence of the concept of comparative reliability is to calibrate the 
unknown strength-reduction factor of a newly introduced element (element 2 
in this case) by equalizing its reliability index to that of the element 1, whose 
reduction factor and reliability level are agreed upon. In other words, it solves 
this set of equations by eliminating the load parameters:
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Jawaheri Zadeh and Nanni [14] found a solution for this set as
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where the unknown ϕ2 has to be calculated from other known parameters.
Table  4.4 (second and third rows) summarizes the statistical data (bias 

factor and coefficient of variation) obtained from tests discussed in detail 
in Gulbrandsen [12], its assumptions (minimum target reliabilities), and 
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strength-reduction factors adopted by ACI 440.1R-06. To avoid discontinu-
ity, ACI 440.1R-06 inserts a transitional range between the two modes (ρfb 
≤ ρf ≤ 1.4 ρfb) in which the reduction factor is linearly interpolated between 
0.55 and 0.65 based on the reinforcement ratio, ρf  .

Taking advantage of the concept of comparative reliability, the strength-
reduction factors can be calibrated proportional to those of a steel RC beam 
whose statistical parameters are given in Table 4.4. In other words, λ1 and δ1 
correspond to the first row of Table 4.4, while λ2 and δ2, depending on the 
failure mode, are taken from the second and third rows of the same table, 
respectively. As a result, the calculated values of the strength-reduction 
factor, ϕ, according to which, ϕ = 0.70 for tension-controlled sections 
and ϕ  =  0.75 for compression-controlled sections, are recommendable, 
respectively.

These new factors may be formulated, similarly to ACI 440.1R-06, in terms 
of reinforcement ratio; however, a more general approach as followed by 
ACI 318-11 is more desirable as it unifies the strength-reduction factors of 
columns and flexural members by describing them as a function of the maxi-
mum tensile strain in the reinforcement. As ACI 440.1R-06 is silent about 
columns, this method allows generalizing the flexural reduction factors for 
cases involving axial force. To that end, the failure mode shall be linked to the 
strain in the extreme tensile layer of reinforcement (εf as opposed to εt in ACI 
318-11) instead of the reinforcement ratio, ρf, which is not the only decisive 
factor in determining the failure mode when axial forces interfere. Equation 
(4.52) is the proposed strength-reduction factor as a function of the tensile 
strain in the reinforcement.

Table 4.4  �Strength-reduction and statistical parameters of cast-in-place steel RC and 
FRP RC beams

Steel RC ϕa ϕa βT
b Bias (λ)b CoV(δ)b

Flexure 0.65 0.90 3.5 1.190 0.089

FRP RC ϕc ϕc βT
d Bias (λ)d CoV(δ)d

FRP rupture 0.55 0.65 3.5 1.11 0.157
Concrete crushing 0.65 0.65 3.5 1.19 0.158
a	 ACI 318-11. ACI Committee 318. Building code requirements for reinforced concrete, ACI 318-11. 

American Concrete Institute, Farmington Hills, MI (2011).
b	 A. S. Nowak and M. M. Szerszen. ACI Structural Journal 100 (3): 383–391 (2003).
c	 ACI 440.1R-06.  ACI Committee 440. Guide for the design and construction of structural concrete 

reinforced with FRP bars. 440.1R-06.  American Concrete Institute, Farmington Hills, MI (2006).
d	 P. Gulbrandsen. Reliability analysis of the flexural capacity of fiber reinforced polymer bars in con-

crete beams. Master thesis, University of Minnesota, MN, p. 80 (2005).
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4.7  ANCHORAGE AND DEVELOPMENT LENGTH

Development length of straight bars. The development length, ld, of FRP 
straight bars is defined in ACI 440.1R-06 as the bond length necessary 
to develop the minimum of ffu, the design tensile stress; ff, as defined in 
Equation (4.40); or ffe as defined in Equation (4.39). ld is given by the fol-
lowing equation:
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where dd is the bar diameter, C is the lesser of the cover to the center of 
the bar or one-half of the center-on-center spacing of the bars being devel-
oped, and α is a factor to account for the bar location. α is taken equal 
to 1.5 for bars with more than 12 in. (300 mm) of concrete cast below, 
otherwise α is taken equal to 1.0. For the case of columns, α is always 
equal to 1.5.

ACI 440.1R-06 recommends the following criterion for development of 
positive reinforcement at points of inflection and simple supports:

	 ≤ φ +l
M
V

ld
n

u
a 	 (4.60)

where Mn is the effective nominal bending moment capacity at the critical 
cross section, Vu is the factored shear force at that section, and la is the 
embedment length (a) beyond the center of the support or (b) at a point of 
inflection. For the latter, la is the larger of the effective depth of the member 
or 12db.

Development length of bent bars. Because of the constituents (i.e., ther-
mosetting resin) and manufacturing method (i.e., pultrusion), it is difficult, 
if not impossible, to create bends at the end of a long FRP bar. Bent bars are 
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typically spliced to longitudinal bars at their ends, where a hook anchorage 
is required. ACI 440.1R-06 recommends the following development length, 
lbhf, for hooked bars:
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lbhf is measured from the critical section to the farthest point on the bar 
and should not be less than 12db or 9 in. (230 mm). Also, the tail length of 
the hook should not be shorter than 12db and the radius of the bend should 
not be less than 3db.

Lap splices. ACI 440.1R-06 recommends that all splices be considered 
class B splices and that a tension lap splice of 1.3ld be used.

COMMENTARY

The production of bar bends is a challenge to FRP bar manufacturers, and 
scarce information is available in the technical literature related to the 
method of production and available dimensions. Standard bends available 
from one manufacturer are given as an example in Table 4.5.
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4.8  SPECIAL CONSIDERATIONS

4.8.1  Multiple layers of reinforcement

Because FRP reinforcement is linear–elastic to failure, when multiple layers 
of FRP reinforcement are used, rupture of the bars at the outermost layer 
controls overall reinforcement failure; in such a case, the strain compat-
ibility approach should be used to determine the flexural resistance of the 
member. If different FRP bars (in terms of size or material) are used in a 
multiple-layer configuration in the same concrete component, failure may 
not occur in the outermost layer of reinforcement; in fact, failure will occur 
in the FRP bar that first reaches its ultimate tensile strain irrespectively of 
its position within the concrete cross section. This latter case, however, has 
little significance as concrete sections with different FRP bars have rare, if 
any, practical application.

The methodology followed with traditional steel reinforcement of locating 
the centroid of the layers of steel bars and determining a result of magni-
tude equal to the total area times the yield strength cannot be used with 
FRP bars because each layer of FRP reinforcement is subjected to different 
levels of strain and, therefore, different values of the tensile stress due to the 
linear–elastic behavior of the FRP reinforcement. Nonetheless, the strain 
compatibility approach should also be used with traditional steel reinforce-
ment if the strain in one of the layers does not reach the yielding strain.

A rectangular cross section with multiple layers of FRP reinforcement 
as indicated in Figure 4.11 is selected. Assume that the FRP reinforcement is 
made of the same material and bar size so that failure of the reinforcement 

Table 4.5  Standard bends of ASLAN 100 GFRP bar
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is controlled by the layer located farthest from the extreme compression 
fiber. Also assume the rectangular stress block approach applies (a similar 
conclusion could be drawn if the rigorous method is selected).

Under these conditions, the neutral axis depth at balanced failure is deter-
mined from Equation (4.21) with d replaced with d1. A numerical procedure 
is initiated by assuming a tentative value for the neutral axis c. Assume first 
that concrete crushing is the controlling failure mode (c > cb); this means that 
the extreme fiber in the concrete has reached the value of εc = εcu, while the 
strain in the ith layer of reinforcement can be found as

	 ε = − ε < εd c
c

f i
i

cu fu, 	 (4.62)

The compressive force in the concrete, C, and the tensile force in the 
reinforcement, T, can be calculated as
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Assume, now, that FRP rupture is the controlling failure mode (c < cb); 
this means that extreme fiber in the concrete has reached a strain εc < εcu, 
while the layer of reinforcement located farthest from the extreme com-
pression fiber has reached the design tensile strain of εf,1 = εfd. The strain in 
the concrete and in each ith layer of reinforcement can be determined from 
similar triangles as
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Figure 4.11 � Flexural member with multiple layers of FRP reinforcement.
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The compressive and tensile forces in both concrete and reinforcement 
can still be determined from Equation (4.63). If the equilibrium condition 
is not satisfied, the procedure involving the selection of a new value of c is 
repeated until T – C = 0. Once the neutral axis depth, c, that satisfies equi-
librium is found, the flexural capacity can be computed as
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4.8.2  Redistribution of moments

Traditional under-reinforced steel RC continuous flexural members undergo 
a significant amount of inelastic deformations prior to failure, mostly due 
to the yielding of the steel reinforcement. For this particular reason, such 
members exhibit a ductile behavior at ultimate condition and redistribu-
tion of moment is allowed with benefits in the economy of reinforcement. 
Conversely, moment redistribution is not attainable in over-reinforced 
beams for which the yielding strain is never reached in the steel reinforce-
ment and inelastic deformations are not fully developed. Moment redis-
tribution is not allowed for FRP reinforced continuous flexural members.

COMMENTARY

The typical result from moment redistribution in a continuous flexural mem-
ber is a reduction of maximum negative moments at the supports and an 
increase of positive moments at midspan from those computed by elastic 
analysis. Sometimes, the opposite mechanism may be preferable (i.e., reduc-
tion of positive moments and increase of negative moments) to narrow the 
envelope of maximum positive and negative bending moments at any section 
within the continuous span as determined from different loading configura-
tions [15].

Redistribution of moments in statically indeterminate concrete struc-
tures is not allowed for when FRP reinforcement is used because plastic 
hinges cannot form due to the linear–elastic behavior up to failure of the 
FRP reinforcement. A pseudoductile behavior has been observed in over-
reinforced FRP beams (with amount of FRP reinforcement well above 
the balanced reinforcement ratio) due to the inelastic behavior of con-
crete prior to failure. Continuous FRP RC beams demonstrated moment 
redistribution when cracking and debonding between FRP and concrete 
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4.8.3  Compression FRP in flexural members

Differently from steel reinforced flexural members, the contribution of FRP 
bars in compression does not increase the strength nor reduce the effects 
of concrete creep of FRP reinforced flexural members due to the limited 
compressive strength and modulus of the FRP bars. For this reason, ACI 
440.1R-06 does not recommend relying upon compression FRP reinforce-
ment in flexural members, but allows its use for fabrication purposes.

The lack of effectiveness of FRP reinforcement in the compression zone 
of flexural members does not necessarily preclude its use in columns. In 
fact, Chapter 5 presents a methodology for the design of FRP RC columns 
subjected to combined axial load and flexure. For analysis purposes, this 
methodology is based on the assumption that the area of FRP bars in com-
pression can be replaced with an equivalent area of concrete—as if the FRP 
bars were not present in the cross section.

occurred. However, no moment redistribution occurred when either the 
midspan or middle support section reached its respective moment capac-
ity due to the brittle nature of FRP reinforcement rupture or concrete 
crushing [16].

COMMENTARY

Studies from Washa and Fluck [17] conducted on steel RC simply supported 
beams demonstrated that the effect of compression reinforcement is benefi-
cial in reducing the long-term deflections under sustained loads. Such behav-
ior is attributed to the creep of concrete that transfers a portion of the 
load from the concrete itself to the compression steel, thus reducing the 
overall stress in the concrete and the resulting deflection caused by the sus-
tained load. Similar studies are not available for FRP RC members; however, 
because of the relatively low elastic modulus of some FRP products (particu-
larly GFRP reinforcement) compared to steel and creep characteristics of 
FRP (which are resin dominated), it is believed that such beneficial effects on 
long-term deflection due to sustained loads are negligible.

In the technical literature, there is no direct measurement of time-dependent 
creep of FRP bar coupons subjected to compression. Experimental evidence 
obtained from GFRP pultruded shapes indicates that the ratio creep strain to 
initial elastic strain is low for stress levels up to 45% of the proportionality 
limit [18]. Accordingly, creep should not cause geometrical integrity problems 
at the stress levels typical of FRP bars in compression.
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4.9  SERVICEABILITY

The serviceability limit states for FRP reinforced concrete flexural members 
generally include crack width, maximum deflections, and maximum FRP 
stress levels to avoid FRP creep-rupture and fatigue. In many instances, 
serviceability criteria (crack width and deflections) may control the design 
of FRP reinforced one-way slabs or beams because of the relatively smaller 
stiffness of these members after cracking.

COMMENTARY

Replacing the steel reinforcement of a flexural member with an equal area 
of FRP reinforcement results in larger deflections and wider cracks [20,21]. 
However, the serviceability criteria for crack width and deflections are gen-
erally satisfied when a section is designed to achieve concrete crushing failure 
[22]. A section designed to reach a failure controlled by FRP bar rupture, vice 
versa, is almost unattainable as it would require a very small amount of rein-
forcement that, in turn, would not satisfy the service condition requirements.

Cohn, Ghosh, and Parimi [19] reported an increase on the strength and 
ductility of under-reinforced steel RC beams with the increase of compression 
reinforcement. Such behavior, particularly important in seismic regions or if 
moment redistribution is desired, is due to the reduction of the depth of the 
compression stress block caused by the presence of compression reinforce-
ment that allows for the neutral axis to shift toward the extreme compression 
fiber to maintain force equilibrium. As such, the strain in the tension reinforce-
ment at failure increases, resulting in more ductile behavior. These authors 
also conducted tests on over-reinforced beams and demonstrated that the 
brittle failure associated to the crushing of the concrete before yielding of the 
steel can be mitigated by the presence of compression reinforcement.

In the case of FRP reinforced flexural members, over-reinforced sections 
exhibit a more ductile behavior than their under-reinforced counterparts. The 
presence of compression FRP reinforcement (assumed to have a higher stiffness 
than that of concrete) would increase the strain in the FRP tension reinforce-
ment as seen in the case of over-reinforced steel RC, but the beneficial effect 
on the member ductility would not be as relevant since FRP is linear–elastic to 
failure. The addition of compression reinforcement could, instead, cause the 
section failure mode to shift from concrete crushing to FRP rupture.
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4.9.1  Control of crack width

Crack width in FRP reinforced concrete is generally limited for aesthetic 
reasons and to prevent water leakage. Differently from the case of steel 
reinforced concrete, crack width limitations related to the potential corro-
sion of the reinforcement are not required for FRP reinforced concrete. ACI 
440.1R-06 recommends the following limiting values: 0.020 in. (0.5 mm) for 
exterior exposure and 0.028 in. (0.7 mm) for interior exposure. More strin-
gent crack width limits might be considered for the design of liquid-retaining 
structures.

The maximum crack width at the tension face of a flexural member, wc, may 
be computed by Equation (4.66), which is based on the work of Frosch [23]:
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where ff is the reinforcement stress, dc is the thickness of cover from tension 
face to center of closest bar, s is the bar spacing, β is the ratio between the dis-
tance from the neutral axis to the tension face of the member and the distance 
from the neutral axis to the centroid of the tensile reinforcement, and kb is a 
bond coefficient that accounts for the bond characteristics of the reinforce-
ment. Frosch’s equation [23] is written in a more general fashion than Equation 
(4.66), so that it can be applied regardless of whether the reinforcement is steel 
or FRP. For the case of FRP reinforced concrete, Frosch’s original equation 
is modified by including the bond coefficient kb. kb varies between 0.60 and 
1.70 and depends on the FRP bar manufacturer, the fiber type, the resin for-
mulations, and the surface treatments. Sand-coated bar surface treatments 
generally trend toward the lower bound of this range. ACI 440.1R-06 con-
servatively recommends the value of 1.4 when kb is not based on experiments.

COMMENTARY

Reviewing the work of Broms [24], Frosch [23] had noted that the crack spac-
ing, Sc, depends on the concrete cover and can be written as follows:

	 Sc = Ψs d *	 (4.67)

where d * = d
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 is the controlling cover distance and ψs is the crack 

spacing factor, which was assumed equal to 1.0 for minimum crack spacing, 
1.5 for average crack spacing, and 2.0 for maximum crack spacing.
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Equation (4.70) represents the starting point for the development of the 
new proposed model by Ospina and Bakis [25] for indirect flexural crack 
control of one-way concrete flexural members. Normalizing the first term 
in the left-hand side of Equation (4.70) by the crack width and the elas-
tic modulus ratios, using 0.017 in. and 29,000 ksi (4 mm and 200 GPa) 

Frosch also noted that the crack width at the level of the reinforcement, 
wc, depends on the strain level in the reinforcement, ε, and the crack spacing. 
Therefore, wc can be written as

	 = ε ⋅ = σ ⋅w S
E

Sc c c 	 (4.68)

Substituting the expression for Sc in Equation (4.68) and assuming the case of 
maximum crack spacing (ψs = 2.0), Frosch obtained the expression in Equation 
(4.66). The coefficient β was introduced to account for the strain gradient 
and was defined as the ratio between the strain at the bottom of the member 
and the strain at the level of the reinforcement.

Frosch’s equation can be rearranged to solve for the permissible bar spacing, 
s, as a function of the permissible maximum crack width, wc:
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Given the difficulty and uncertainty in determining crack width, a design 
approach based on maximum bar spacing appears more logical. Frosch [23] 
also developed a simplified equation that was modified and adopted in ACI 
318 as a new crack control equation to evaluate the maximum bar spacing for 
the 1999 revision of the building code:
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where fs is the steel reinforcement stress at service level in psi (MPa) and cc 
is the clear concrete cover.
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as reference values, and introducing the bond coefficient, kb, Ospina and 
Bakis [25] obtained the following equation:
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In the design examples presented in Chapters 6–8, compliance with the 
serviceability criterion of limiting crack width is checked according to both 
methods (i.e., ACI 440.1R-06 and that of Ospina and Bakis [25]).

4.9.2  Control of deflections

Deflections in reinforced concrete slabs and beams are generally limited to 
prevent damage to nonstructural or other structural elements and to avoid 
disruptions of function. Limiting values for deflections of steel RC flexural 
members are defined in ACI 318-11.

As discussed in Section 4.3, minimum values of thickness of FRP rein-
forced flexural members are proposed by ACI 440.1R-06 for initial mem-
ber proportioning only. The control of deflections consists in verifying that 
the sum of the immediate deflections due to the loads and the long-term 
deflection due to creep and shrinkage is smaller than a limiting value as 
given in the following equation:

	 Δmax = Δimmediate + Δcreep/shrinkage ≤ Δlimit	 (4.72)

The immediate deflections are generally computed including live loads 
only, whereas the long-term deflections are computed including the dead 
loads and a percentage (typically 20%) of the live loads.

4.9.2.1 � Elastic immediate deflections of 
one-way slabs and beams

ACI 440.1R-06 recommends using indirect procedures for initial member 
proportioning and then checking deflections explicitly. The formula to com-
pute the maximum immediate elastic deflection of a one-way flexural mem-
ber, Δmax, under uniformly distributed load is reported in Equation (4.73). 
The maximum immediate elastic deflection of a one-way flexural member, 
Δmax, can be computed as follows [26]:

	 ( )∆ = + + 
l
E I

M M M
c e

5
48

0.1max

2

0 1 2 	 (4.73)
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where M0 is the midspan moment, M1 and M2 are the end moments, l is the 
span length, Ec is the modulus of elasticity of concrete, and Ie is the effective 
moment of inertia.

Equation (4.73) is based on the assumptions of linear distribution of the 
strains over the member cross section. For a flexural member subjected to 
various load cases, the deflection for each case is calculated separately and 
then algebraically added to the others to obtain the total.

Moment of inertia. When computing deflections of a flexural member, 
the magnitude of the flexural rigidity (defined as the product of the concrete 
modulus of elasticity and the moment of inertia, EcI) must be determined. 
EcI is not constant throughout the length of the element as I (the moment 
of inertia) is a section property that depends on the applied moment and 
the resulting cracking.

The span of a continuous reinforced concrete beam subjected to a uni-
formly distributed load is shown in Figure 4.12. If the applied load is such 
that bending moments do not exceed the cracking moment, the flexural 
rigidity is constant throughout the beam and can be computed using the 
uncracked or gross moment of inertia, Ig. As the load increases and the 
induced bending moments exceed the cracking moment, cracking occurs 
at the supports first and, eventually, at midspan. When a beam section 
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Mpos
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Figure 4.12 � Moment of inertia for a continuous beam.
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cracks, a reduced or cracked moment of inertia results at various loca-
tions, as shown in the graph of Figure 4.12. It is therefore obvious that, for 
the purpose of simplifying design, an effective moment of inertia must be 
determined.

Effective moment of inertia for steel RC. To express the transition 
between the gross moment of inertia, Ig, and the cracked moment of inertia, 
Icr, ACI 318-11 proposes to use the following equation (Branson’s [26] 
equation) to calculate an effective moment of inertia, Ie, at any given cross 
section along the beam:

	 1
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≤ 	 (4.74)

where Ma is the unfactored moment at the section where the deflection is 
calculated.

As Ma increases, the effective moment of inertia, Ie, decreases. When Ma 
is close to the nominal flexural capacity of the cross section, Ie becomes 
close to the fully cracked moment of inertia. The relationship between the 
sectional rigidity and the applied bending moment is illustrated in its gen-
eral fashion in Figure 4.13.

A single value of effective moment of inertia for the flexural member, Ie,av, 
can be derived when the variable I results from the variation in the extent of 
concrete cracking. For the case of a continuous beam such as the one shown 
in Figure 4.12, ACI Committee 435 [27] recommends the following equation:

	 Ie, ave = 0.70 Ie. midspan + 0.15 (Ie, sup1 + Ie, sup2)	 (4.75)
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Figure 4.13 � Flexural rigidity versus applied bending moment relationship.
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For the case of a beam continuous only at one end, the following expres-
sion can be used:

	 Ie, ave = 0.85 Ie. midspan + 0.15 Ie, sup1	 (4.76)

Effective moment of inertia for FRP RC. For FRP reinforced members, 
Branson’s equation is adapted by including the reduction coefficient βd as 
the multiplier of the first term in Equation (4.74). βd is expressed by
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βd is a reduction coefficient related to the reduced tension stiffening of FRP 
when compared to steel reinforcement. This reduced tension stiffening can 
be attributed to the lower modulus of elasticity and different bond stresses 
for the FRP reinforcement as compared with those of steel.

The expression of the effective average moment of inertia for the flex-
ural member, Ie,av, computed for traditional steel RC is also applicable to 
FRP RC.

COMMENTARY

With reference to the continuous T-beam in Figure 4.12, the gross moment 
of inertia can be computed as follows (Figure 4.14a):

I
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When the cracked section in the negative moment region is considered, 
such as Section A-A of the T-beam in Figure 4.12, the neutral axis depth 
intersects the web of the beam and its depth from the bottom of the 
section can be computed using Equation (4.8). The cracked moment of 
inertia (see Figure 4.14b) can then be computed as

	 ( ) ( )= + −I
b kd

n A d k
3

1cr
w f

f f f

3
2 	 (4.79)

When the cracked section at midspan is analyzed, such as Section B-B of 
the T-beam in Figure 4.12, the section can be studied as rectangular if the 
cracked neutral axis depth falls within the depth of the flange. This occurs 
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when the condition in Equation (4.9) is satisfied. In this case, the cracked 
moment of inertia can be computed as (Figure 4.14c):
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If Equation (4.9) is not satisfied (Figure 4.14d), the neutral axis depth is to 
be computed by solving the following equation for the unknown neutral axis 
depth, x = ccr:
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Once the neutral axis depth is determined, the cracked moment of inertia 
of a T-section with N.A. through the web can be determined as
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4.9.2.2 � Elastic immediate deflections according to Bischoff

As demonstrated by Bischoff [28], Branson’s equation overestimates mem-
ber stiffness when the Ig/Icr ratio of the member is greater than about 3 
or 4. This corresponds to most FRP reinforced concrete beams, which typi-
cally have an Ig/Icr ratio between 5 and 25. It is for this reason that past 
research on deflection of FRP reinforced concrete beams has shown that 
Branson’s equation underestimates deflection, particularly for lightly rein-
forced members with a high Ig/Icr ratio.

Bischoff [28] and, more recently, Bischoff and Gross [29] proposed an 
alternative section-based expression for the effective moment of inertia Ie 
that works equally well for both steel and FRP reinforced concrete mem-
bers without the need for empirical correction factors. Branson’s original 
expression represents a weighted average of the uncracked and cracked 
member stiffness (EI), while Bischoff’s proposed approach represents a 
weighted average of flexibility (1/EI). The approach using a weighted aver-
age of flexibility represents better the deflection response of members with 
discrete cracks along their length [30].

The section-based expression proposed by Bischoff [28] is modified to 
include an additional factor γ to account for the variation in stiffness along 
the length of the member. The modified expression for the effective moment 
of inertia is given by
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This approach provides reasonable estimates of deflection for FRP RC 
beams and one-way slabs. The factor γ is dependent on load and bound-
ary conditions and accounts for the length of the uncracked regions of the 
member and for the change in stiffness in the cracked regions. In lieu of 
a more comprehensive analysis, the value γ = 1.72 − 0.72 (Mcr/Ma) is sug-
gested, which is the result from integrating the curvature over the length of 
a beam with a uniformly distributed load.

Unless stiffness values are obtained by more comprehensive analysis, 
immediate deflections can be computed with the effective moment of iner-
tia given by Equation (4.83) using the maximum service load moment Ma 
in the member.

When Ma > Mcr, the assumed Mcr value has a significant effect on com-
puted values of deflection. A lower Mcr can be used to account for the ten-
sile stresses that develop in the concrete from restraint to shrinkage [30]. 
The  use of a reduced Mcr also accounts for cases where the calculated 
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maximum unfactored moment is only slightly less than the unrestrained 
Mcr (based on fr = 7.5√f ′c), as factors such as shrinkage and temperature can 
still cause a cross section to crack over time.

An example on how to compute deflection using this method is presented 
in Chapter 7.

4.9.2.3  Elastic immediate deflections of two-way slabs

The availability of various finite element (FE) analysis computer programs 
makes the FE method the most popular for computing deflections of two-
way reinforced concrete slabs. Unless FE software dedicated to the analysis 
and design of concrete structures is used, the flexural rigidity of a two-way 
member is computed based on the gross-sectional properties. Accounting 
for the concrete elements’ cracking-induced reduction in stiffness is complex 
due to its dependence on the amount and orientation of the tension rein-
forcement and the distribution of the internal bending moments. A simpli-
fied way of accounting for cracking is to compute deflections conservatively 
considering the cracked conditions. This can be achieved by modifying the 
modulus of elasticity of concrete elements using the reduction factor Icr/Ig. 
Moreover, to account for different reinforcement ratios along the in-plane x 
and y directions with, for example, ρsx > ρsy, the modulus of elasticity along 
the y direction of the concrete elements can be reduced by the ratio ρsy/ρsx.

Another viable method for a more realistic computation of deflections is 
the crossing beam method [27], which consists in treating the two-way slab 
as an orthogonal one-way system, in which the middle and column strips 
are treated as continuous beams of unit width. For each of these beams, 
midspan deflections can be computed by beam analogy using the elastic 
beam deflection equation. This approach allows the calculation of deflec-
tions by beam analogy, assuming the middle strips are supported by the 
perpendicular column strips.

The classical solution based on the plate bending theory [27] for elastic 
thin plates may also be used. This approach can compute the immediate 
deflections of uncracked two-way slab systems loaded uniformly. Closed-
form solutions are, however, available only for a limited number of load 
and geometry cases. Modifications to the original theory can be considered 
to include the effect of cracking.

4.9.2.4 � Concrete creep effects on deflections 
under sustained load

In general, sustained loads and time-dependent factors cause the flex-
ural member’s immediate deflections to increase. ACI 318-11 provides a 
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deflection multiplier for the additional deflection due to sustained loading. 
Research has demonstrated that the approach used for estimating long-
term deflections of steel reinforced members can also be applied to FRP 
reinforced members [4].

As noted in ACI 440.1R-06, the time-dependent deflection increase for 
FRP RC can be expected to be proportionally less than steel reinforced 
concrete. The creep-induced reduction of the concrete modulus of elastic-
ity causes an overall reduction of the members’ flexural rigidity, EcI. The 
reduced modulus also causes an increase of the neutral axis depth of the 
cracked cross section, which, in turn, induces an increase of the moment of 
inertia. This second effect is typically more significant in FRP reinforced 
members because of the lower tensile modulus of the FRP reinforcement 
compared to steel.

The following equation is proposed by ACI 440.1R-06 to compute long-
term deflections due to creep and shrinkage, Δ(cp+sh):

	 Δ(cp+sh) = 0.6 ξ (Δi)sus	 (4.84)

where (Δi)sus is the immediate deflection due to sustained loads and ξ 
is a factor varying between 0 and 2 depending on the time period over 
which deflections are computed. Values of ξ are given by ACI 318-11. For 
100 years, ξ = 2 is assumed.

4.9.3  FRP creep rupture and fatigue

Sustained loads can cause FRP bars to fail suddenly after a period of time 
defined as the endurance time. This phenomenon is known in literature as 
creep rupture (or static fatigue). ACI 440.1R-06 recommends limiting the 
stress level in the FRP reinforcement induced by sustained loads (dead loads 
and the sustained portion of the live load) to prevent creep rupture. The 
stress level in the FRP can be computed using the Navier equation:

	 = − ≤ −f
M
I

n d k k ff s
s

cr
f f creep R fu(1 ), 	 (4.85)

where Ms is the bending moment acting on the cross section where the 
FRP stress is computed, and kcreep-R is the knock-down factor applied to 
the design tensile strength of the FRP bars to account for creep rupture. 
According to ACI 440.1R-06, kcreep-R is equal to 0.20 for glass, 0.30 for 
aramid, and 0.55 for carbon FRP.

The provision given in Eq. (4.85) indirectly implies that the concrete in 
compression is still within its linear-elastic range. For this, it has to be 
checked and verified that the maximum concrete compressive stress (fc) is 
smaller than 0.45 f ′c when the applied moment is Ms.
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If the structure is subjected to fatigue regimes (i.e., repeated cycles of 
loading and unloading), ACI 440.1R-06 recommends limiting the FRP 
stress to the same threshold values adopted to prevent creep rupture, kcreep-R 
ffu. Equation (4.85) can be used with Ms equal to the moment due to sus-
tained loads plus the maximum moment induced in a fatigue loading cycle.

4.10  SHEAR CAPACITY

When using FRP as shear reinforcement, one needs to recognize that FRP has 
a relatively low modulus of elasticity, FRP has a high tensile strength and no 
yield point, tensile strength of the bent portion of an FRP bar is significantly 
lower than the straight portion, and FRP has low dowel resistance [22].

COMMENTARY

The use of FRP as shear reinforcement has to be further explored to provide 
the foundation of a fully rational model to predict shear strength [31]. This 
is also the case for a deeper understanding of the contributions of concrete, 
aggregate interlock, and dowel effect of the longitudinal FRP reinforcement. 
At present, most of the shear design provisions incorporated in existing 
codes and guides are based on the design formulas of members reinforced 
with conventional steel, considering some modifications to account for the 
differences between FRP and steel reinforcement [32].

Compared with a steel reinforced section with equal areas of longitudinal rein-
forcement, a cross-section using FRP flexural reinforcement after cracking has 
a smaller depth to the neutral axis because of the lower axial stiffness (that 
is, product of reinforcement area and modulus of elasticity). The compression 
region of the cross-section is reduced, and the crack widths are wider. As a 
result, the shear resistance provided by both aggregate interlock and com-
pressed concrete is smaller [33].

The contribution of longitudinal FRP reinforcement in terms of dowel action 
has not been determined. Because of the lower strength and stiffness of FRP 
bars in the transverse direction, however, it is assumed that their dowel action 
contribution is less than that of an equivalent steel area [33].

Recent research [31] showed that the presence of GFRP stirrups (similar to 
steel stirrups) enhances the concrete contribution after the formation of the 
first shear crack. The shear resistance is influenced by the spacing between the 
stirrups. A small spacing contributes to enhance the confinement of the con-
crete, to control the shear cracks, and to improve the aggregate interlocking.
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The basic safety relationship at the ultimate limit state can be written as

	 ϕVn ≥ Vu	 (4.86)

In Equation (4.86), ϕVn is the factored shear capacity of the member and 
is a function of the member geometry, the spacing of the reinforcement, 
and the mechanical properties of the materials; the term “factored” means 
that the nominal calculated shear capacity has been reduced by the safety 
factors associated with the material or the failure mode depending upon the 
calculation procedures followed.

The second term of Equation (4.86), Vu, is the factored shear force result-
ing from the analysis of the member and is a function of the member geom-
etry, stiffness and boundary conditions, and the applied loads; the term 
“factored” means that the calculated shear force associated to a specified 
loading condition has been amplified by the safety factors related to the act-
ing loads. Vu comes from the structural analysis performed on the system 
being studied and follows ACI 318-11 provisions.

The nominal shear strength of a member, Vn, is the sum of the contribu-
tions of concrete, Vc, and FRP reinforcement, Vf:

	 Vn = Vc + Vf	 (4.87)

An upper limit for Vn based on the magnitude of Vf is discussed in Section 
4.10.3 in order to maintain the current shear strength-reduction factor of 
0.75 adopted by ACI 440.1R-06.

4.10.1  Concrete contribution, Vc

According to ACI 440.1R-06, the concrete contribution to the shear capac-
ity, Vc, of a member of rectangular section with FRP bars used as the main 
reinforcement can be evaluated according to the equation developed by 
Tureyen and Frosch [34]:

	 = ′5V f b cc c w 	 (4.88)

	 [or = ′5
2

V f b cc c w in SI units]

where f ′c is the compressive strength of concrete (psi), bw is the width of the 
beam web or the unit width of a slab, d is the effective depth of the FRP 
flexural reinforcement, and c is the compressive depth of the neutral axis in 
the fully cracked section computed per Equation (4.8).

A lower limit for Vc is discussed in Section 4.10.3 in order to maintain the 
current shear strength-reduction factor.
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COMMENTARY

In their analysis, Tureyen and Frosch [34] considered a portion of a flexural 
member subjected to constant shear and computed the principal stress of an 
infinitesimal concrete element located in the compression zone where shear 
failure may initiate. This uncracked concrete element is subjected to shear 
and axial compression stresses.

When failure occurs, the principal tensile stress reaches the tensile strength 
of the concrete. Using the Mohr’s circle, the following can be written:

	 f
2 2

ct
2

2σ − τ + σ



 = − 	 (4.89)

Solving for τ, the expression of the tensile stress at failure can be obtained:

	 f fct ct
2τ = + σ 	 (4.90)

By considering the equilibrium of a member strip of infinitesimal width 
chosen at a flexural crack location, the shear capacity of the section due to 
the concrete itself was written in the following fashion:

	 V b c f f
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c w ct ct
m2= + σ 	 (4.91)

In fact, analyzing the free-body diagram of the member strip at a crack 
location, Tureyen and Frosch [34] considered the shear stresses generated 
from the flexural stresses due to ΔM = V⋅Δx and noted that the maximum 
shear stress, achieved at the mid-depth of the compression zone, is equal to
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Substituting τmax = τ and σ = σm/2 in Equation (4.90) and solving for V, Equation 
(4.91) was obtained.

The design Equation (4.89) was then arrived at after substituting f f6ct c= ′
in Equation (4.91), factoring out fc′, and rearranging terms:
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Design requirements. For the case of FRP reinforced concrete beams, 
shear reinforcement is not required when the following condition is verified:

	 ≤ φ
V

V
u

c

2
	 (4.94)

For the case of slabs and footings, this threshold is raised to ϕVc. Typically, 
slabs and footings do not include shear reinforcement.

COMMENTARY

FRP RC members without shear reinforcement exhibit a size effect in shear 
whose extent and relevant parameters are similar to those of steel RC mem-
bers [35]. Experimental evidence gained using smaller specimens may lead to 
overestimating strength when used for validation purposes and in practice on 
larger members without shear reinforcement. When used, longitudinal skin 
reinforcement or minimum shear reinforcement contributes to mitigating the 
size effect. In particular, the former option improves the flexural stiffness, 
allowing the formation of more closely spaced cracks. The size effect is exac-
erbated as the amount of flexural reinforcement and the maximum aggregate 
size are reduced, both resulting in smaller shear strength values. However, the 
ACI 440.1R-06 algorithm remains conservative due to an implicit strength-
reduction factor that offsets size effect and is also effective for large beams 
(with effective depth limited to that in the research presented) with minimum 
FRP shear reinforcement [35]. Figures 4.15 and 4.16 show setup and postmor-
tem crack patterns for a large-sized beam that failed in shear.

Punching shear. ACI 440.1R-06 proposes the following equation to 
calculate the concentric punching shear capacity of FRP reinforced two-
way concrete slabs that are supported by interior columns or subjected to 
concentrated loads, either square or circular in shape:

	 10V f b cc c o= ′ 	 (4.95)

	 [or 
4
5

V f b cc c o= ′  in SI units]

The theoretical and experimental values of the constant K were computed 
and compared based on a database of 370 beams. Based on these results, it 
was suggested to adopt a value of K = 5 for design purposes.
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Figure 4.15 � Test setup for shear test. (A. K. Matta et al. ACI Structures Journal 110 (4): 
617–628, 2013.)

S1-0.12-1A

S1-0.12-1A

Figure 4.16 � Crack pattern of large-sized GFRP-RC beam subject to shear-compression 
failure. (A. K. Matta et al. ACI Structures Journal 110 (4): 617–628, 2013.)
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where bo is the perimeter of the critical section for slabs and footings 
(computed at d/2 away from the column face), and c is the cracked trans-
formed-section neutral axis depth.

Equation (4.95) corresponds to the basic ACI 318-11 concentric punching 
shear equation for steel reinforced slabs modified by the factor 5/2 k that 
accounts for the axial stiffness of the FRP reinforcement as shown:

	
5
2

4V k f b dc c o= 



 ′ 	 (4.96)

COMMENTARY

Ospina [36] demonstrated that the one-way shear design model proposed by 
Tureyen and Frosch [34], which accounts for reinforcement stiffness, can be 
modified to account for the shear transfer in two-way concrete slabs. Dulude 
et al. [37] investigated the punching shear behavior of full-scale, interior, 
GFRP RC two-way slabs. All slabs showed punching shear failure and similar 
crack patterns, regardless of the reinforcement ratio. The slabs with low 
reinforcement ratios showed some ductility and large deformation before 
the punching shear failure. Both slab thickness and reinforcement ratio sig-
nificantly affected punching shear capacity. Figure 4.17 shows an example of 
a GFRP RC two-way slab tested to simulate the effects of punching shear. 
Figure 4.17a depicts the test setup showing the restraint at the perimeter of 
the slab that would correspond to the load in a field condition. Figure 4.17b 
displays the extensive crack pattern visible on the slab top surface, and the 
third one portrays the punching cone after failure.

4.10.2  Shear reinforcement contribution, Vf

The ACI 318-11 method used to compute the shear contribution of steel 
stirrups is adopted by ACI 440.1R-06 to compute the contribution to the 
shear capacity due to the FRP stirrups, Vf:

	 =V
A f d

s
f

fv fv f 	 (4.97)

where Afv is the area of FRP stirrups within a spacing of s. The tensile 
strength of FRP for shear design, ffv, is calculated as

	 ffv = 0.004Ef ≤ ffb	 (4.98)
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(a) Test setup for 8 in. (200 mm) thick slab

(b) Crack pattern

Figure 4.17 � Punching shear test of two-way GFRP-RC slab. (University of Sherbrooke, 
Sherbrooke, Quebec, Canada; courtesy of Prof. Brahim Benmokrane.)
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where ffb is the strength of the bent portion of the FRP stirrup. ffb depends 
on the ratio of internal radius of bend in stirrups to their diameter, rb/db, 
which may be assumed equal to 3. The tail length of an FRP stirrup should 
be not less than 12db. The strength of the FRP bend recommended by the 
ACI 440.1R-06 is

	 = +








 ≤f

r
d

f ffb
b

b
fu fu0.05 0.3 	 (4.99)

At this time, the shear contribution of bent longitudinal FRP bars has 
not been fully assessed. However, provisions similar to those adopted in 
ACI 318-11 for steel RC construction are envisioned to be applicable for 
the case of FRP reinforcement. An upper limit for Vf is discussed in Section 
4.10.3.

Minimum shear reinforcement. The minimum amount of shear rein-
forcement, Afv,min, defined in ACI 440.1R-06 is

	 =A
b s

f
fv

w

fv

50
,min 	 (4.100)

	 [or =A
b s

f
fv

w

fv

0.35
,min  in SI units]

COMMENTARY

Equation (4.100) was derived from steel-reinforced members and is more 
conservative when used for their FRP reinforced counterparts.

The spacing of the stirrups cannot exceed the smaller half of the value of 
the effective depth of the flexural reinforcement, d/2, or 24 in. (610 mm). 

(c) Punching cone

Figure 4.17 (Continued)
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Furthermore, to prevent shear failure due to crushing of the web, the fol-
lowing limitation is considered:

	 ≤ ′8V f b df c w 	 (4.101)

4.10.3  Strength-reduction factor for shear

The shear strength-reduction factor of 0.75 required by ACI 318-11 is also 
adopted by ACI 440.1R-06. However, in order to maintain the same level 
of reliability in FRP RC as expected for steel RC, it has been shown [14] 
that the following upper limit limitation on Vn must be imposed:

	 Vn = Vc + Vf if Vf ≤ 3Vc	 (4.102)

	 Vn = 4Vc if Vf > 3Vc	 (4.103)

The same reliability analysis also demonstrates that for members with no 
shear reinforcement, such as slabs and footings, ACI 440.1R-06 tends to 
underpredict the shear strength. For these members, the contribution of 
concrete to the shear capacity need not be taken less than

	 ≥ ′0.8V f b dc c w   (for one-way shear)	 (4.104)

	 ≥ ′1.6V f b dc c w   (for two-way shear)	 (4.105)

provided that the flexural reinforcement satisfies the minimum requirement 
for temperature and shrinkage.

COMMENTARY

ACI 440.1R-06 states that “the strength-reduction factor of 0.75 given by 
ACI 318-05 for reducing nominal shear capacity of steel-reinforced concrete 
members should also be used for FRP reinforcement.” This singles out this 
guideline for proposing a larger (i.e., less conservative) strength-reduction 
factor for shear as compared to flexure and makes the need for validation 
more deeply felt [14]. The process of calibrating the safety factors starts by 
obtaining the statistical parameters; thus, FRC RC beams with or without 
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transverse FRP reinforcement (stirrups) were investigated independently as 
follows: (a) Test results compiled by Miano [38] in combination with results 
from Matta et al. [35] provided a statistical database for beams without stir-
rups, and (b) a similar database for beams with shear reinforcement (stirrups) 
was collected by Vitiello [39].

Based on the databases, statistical parameters of FRP RC beams with-
out stirrups under shear failure are calculated as λR = 1.93 and δR = 0.238 
(Table  4.6, first row). Similarly, statistical parameters of FRP reinforced 
beams under shear failure are calculated as λR = 1. 64 and δR = 0.353 
(Table  4.6, second row). For each of these two cases, the comparative 
reliability equation may be used to calculate the shear strength-reduc-
tion factor. Substituting the probabilistic parameters of shear failure of 
a steel RC beam from Table  4.6 (last row) (ϕ1 = 0.75, λ1 = 1.23, and δ1 
= 0.109) and an FRP RC beam from Table 4.6 (λ2 and δ2 from either of 
the first two rows), the strength-reduction factor for the latter can be 
calculated for the presumed value of target reliability of βT = 3.5 (the first 
two rows of Table  4.7). Evidently, the current shear strength-reduction 
factor of 0.75 for FRC RC is relatively conservative for beams with no 
stirrups, while in presence of such reinforcement, a drastic modification 
(from existing ϕ = 0.75 to no less than ϕ = 0.50) appears to be neces-
sary. However, two simple modifications to the limitations of the shear 
design equation (i.e., one for a minimum value of Vc and one for maximum 
amount of shear reinforcement) can reduce the likelihood of unnecessary 
overdesign or undesired underdesign, while the anticipated level of safety 
is maintained.

FRP RC beams without stirrups: With reference to ACI 318-11, the 
shear strength proposed by ACI 440.1R-06 may be rewritten as

	 V k V
5
2

c FRP c Steel, ,= 





	 (4.106)

In case of lightly FRP reinforced flexural members such as slabs and 
footings, for which the longitudinal reinforcement is normally next to the 
minimum allowable, the current formulation of shear resistance from ACI 
440.1R-06 leads to results that might appear unrealistic. Here, an attempt is 
made to investigate whether a minimum can be imposed on the contribution 
of concrete.

From the database of beams with no stirrups, those specimens were 
extracted whose tensile stiffness (ρf   Ef ) is less than a steel reinforced slab 
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with minimum reinforcement (ρs,min = 0.0018, Es = 29,000 ksi = 200 GPa), 
or ρf  Ef < 52.2 ksi (360 MPa). For a slab with such tensile stiffness, k is ≈0.16. 
For the subset of the database with ρf  Ef < 52.2 ksi (360 MPa), it is assumed 
that the shear strength can be calculated as

	 V f b d0.80c c w≥ ′ 	 (4.107)

In other words, k, in the formulation proposed by ACI 440.1R-06, need 
not be taken less than 0.16. Table  4.6 (third row) presents the statistical 
parameters of this subset if Vc is calculated according to this equation. The 
strength-reduction factor of the subset can be calculated from the compara-
tive reliability equation. This leads to ϕ2 = 0.75 (Table 4.7, third row), which 
is equal to the current factor of ACI 440.1R-06, which in turn confirms that 
the proposed limit is of adequate safety:

	 V f b d0.80c c w≥ ′ 	 (4.108)

This minimum would still guarantee safety and, at the same time, would 
prevent penalizing one-way shear in elements such as slabs and foot-
ings. Accordingly, for two-way shear (punching shear) calculated accord-
ing to Equation (4.95), the corresponding minimum value for Vc can be 
expressed as

	 V f b d1.6c c w≥ ′ 	 (4.109)

FRP RC beams with stirrups: To address the low strength-reduction 
factor for beams with FRP stirrups requires pinpointing the source of devia-
tion in resistance, indicated by the large coefficient of variation of such ele-
ments (δR = 0.353). This variation represents the uncertainty associated with 
the element’s strength that, subsequently, leads to a low strength-reduction 
factor for a target reliability of βT = 3.5.

Grouping the beams based on the level of shear reinforcement (i.e., Vf  /
Vc or FRP to concrete shear contribution) reveals a direct relationship 
between this ratio and deviation of resistance, as the beams with Vf ≥ 3Vc 
were identified as the most inconsistent (δR = 0.614 from Table 4.7, fourth 
row). In line with ACI 318-11 and ACI 440.1R-06 approaches, but using 
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a lower threshold, it is proposed to limit shear reinforcement contribu-
tion, Vf, to 3Vc. By imposing a new ceiling on the combination of the two 
components of the shear resistance, the set of elements with Vf ≥ 3Vc is 
excluded from the sample population as expressed by Equations (4.102) 
and (4.103).

Equation (4.103) covers those cases in which the design is governed by 
nonstrength considerations, such as achieving higher ductility through a tight 
arrangement of the stirrups.

Leaving out the cases with Vf ≥ 3Vc from the sample population, the 
statistical parameters are calculated for the remainder population 
(Table 4.6, fifth row) with a considerable improvement in consistency of 
behavior (δR decreases from 0.353 to 0.226). Using these new parame-
ters, the strength-reduction factors are recalculated (Table 4.7, last row) 
and show a strength-reduction factor of 0.77 for the target reliability of 
βT = 3.5.

Combining these two limits, the shear strength equations of ACI 440.1R-06 
may be reintroduced as

	 V f b c5c c w= ′ 	 (4.110)

	 Vn = Vc + Vf ≤ 4Vc	 (4.111)

Table 4.6  �Strength-reduction and statistical parameters of FRP reinforced beams 
subject to shear

FRP RC ϕa βT Bias (λ) CoV(δ)

Vf = 0 (no stirrups) 0.75 3.5 1.93 0.238
No limit on Vf 0.75 3.5 1.64 0.353
Vf = 0 (k < 0.16) 0.75 3.5 1.67 0.227
Vf > 3Vc 0.75 3.5 1.22 0.614
Vf ≤ 3Vc 0.75 3.5 1.80 0.226

Steel RC ϕb βT
c Bias (λ)c CoV(δ)c

Shear 0.75 3.5 1.23 0.109
a	 ACI 440.1R-06. ACI Committee 440. Guide for the design and construction of structural concrete 

reinforced with FRP bars.
b	 ACI 318-11. ACI Committee 318. Building code requirements for reinforced concrete, ACI 318-11. 

American Concrete Institute, Farmington Hills, MI (2011).ACI 318-11.
c	 A. S. Nowak and M. M. Szerszen. ACI Structural Journal 100 (3): 383–391 (2003).



Flexural members  137

4.10.4  Examples—One-way shear strength

The examples presented here (US customary only) are intended to show 
an application of the algorithms discussed in the preceding sections. More 
exhaustive design examples are given in Chapters 6, 7, and 8.

Example 4.13

Calculate the nominal and design shear strength of the following beam:

Concrete: f ′c = 4.0 ksi
Ec (ksi) = 57√f ′c(psi) = 3600 ksi

Longitudinal 
reinforcement: ffu = 60 ksi

Ef = 6000 ksi
Af = 4#10 = 4.91 in.2

Shear reinforcement: ffu = 60 ksi
Efv = 6000 ksi
Afv = #3@10 in.
rb/db = (rb/db)min = 3.0

Size: bw = 16.0 in.  Width of the beam
h = 25.0 in.  Height of the beam
cc = 3.0 in.  Concrete cover
d = h-cc = 22.0 in.  Effective depth

Solution:
Concrete contribution, Vc: nf = Ef  /Ec = (6000 ksi)/(3600 ksi) = 1.67

ρf = Af  /(bwd) = 0.0139
nf ρf = 0.0233
k = 0.194
c = kd = 4.26 in.
Vc = 5√f ′cbwc = 21.6 kip

Continued

Table 4.7  �Calculated strength-reduction 
factors for FRP RC beams subject 
to shear for βT = 3.5

Limit state ϕ
Vf = 0 (no stirrups) 0.84
No limit on Vf 0.49
Vf = 0 (k < 0.16) 0.75
Vf ≤ 3Vc 0.77
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Shear reinforcement 
contribution, Vf:

Afv = #3@10 in. = 0.22 in.2

s = 10.0 in.
ffv = 0.004Efv ≤ ffb

ffb = (0.05rb/db + 0.3) ffu ≤ ffu

ffb = 0.45ffu = 27.0 ksi

ffv = 24.0 ksi
Vf = Afv ffvd/s = 11.6 kip

The nominal shear 
strength:

Vn = Vc + Vs = 33.2 kip

The design shear strength: ϕVn = 0.75Vn = 24.9 kip

Example 4.14

Calculate the spacing of the stirrups for the beam in Example 4.13 so 
that a design shear strength of 30 kip can be provided.

Solution:
ϕVn = 0.75Vn = 30.0 kip
Vn = Vc + Vf = 40.0 kip
Vc = 21.6 kip
Vf = 18.4 kip
Vf = Afv ffvd/s = 18.4 kip
s = 6.3 in.
Use: #3@6 in.
Vn = 41.0 kip
ϕVn = 0.75Vn = 30.8 kip

Example 4.15

Compare the shear strength of the beams in Examples 4.13 and 4.14 
with those of two similar beams with grade 60 steel flexural and shear 
reinforcement.

Solution: Example FRP RC Steel RC
4.13 Vc = 21.6 kip Vc = 44.5 kip

Vf = 11.6 kip Vs = 29.0 kip
Vn = 33.2 kip Vn = 73.5 kip
ϕVn = 24.9 kip ϕVn = 55.1 kip

4.14 Vc = 21.6 kip Vc = 44.5 kip
Vf = 19.4 kip Vs = 48.4 kip
Vn = 41.0 kip Vn = 92.9 kip
ϕVn = 30.8 kip ϕVn = 69.7 kip
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4.10.5  Examples—Two-way shear strength

The examples presented here (US customary only) are intended to show 
an application of the algorithms discussed in the preceding sections. More 
exhaustive design examples are given in Chapters 8 and 10.

Example 4.16

An 8 in. flat plate (h = 8 in., d = 6.5 in., f ′c = 5 ksi, Ec = 4030 ksi) is 
supported by 18 in. × 18 in. columns with tributary areas of A = 20 ft 
× 20 ft = 400 ft2 and sustains a live load of 50 psf and an additional 
dead load of 15 psf (D = 115 psf, L = 50 psf). Check the adequacy of 
the slab if: (a) the flat plate is reinforced by GFRP bars with ffu = 60 ksi 
and Ef = 6000 ksi, and (b) the flat plate is reinforced by steel (fy = 60 
ksi). Assume that the reinforcement ratio for both cases is equal to the 
shrinkage and temperature reinforcement for FRP bars or 0.0036.

U = 1.2D + 1.6L = 218 psf
Vu = U.A = 87.2 kip
b0 = 4(C + d) = 98 in.	 C = 18 in.: column size

FRP RC Steel RC
nf = Ef /Ec = (6000 ksi)/(4030 ksi) 
= 1.49

ρf = Af /(bwd) = (0.0036bwh)/(bwd) 
= 0.0044

nf ρf = 0.0066
k = 0.108
c = kd = 0.70 in.
Vc = 10√f ′cb0c = 48.5 kip Vc = 4√f ′cb0d = 180.2 kip
ϕVn = (0.75)Vc = 36.4 kip < Vu 
= 87.2 kip

ϕVn = (0.75)Vc = 135.1 kip > Vu

Inadequate Adequate

The vast difference between the two cases in Example 4.13 reveals 
that for two-way flexural members such as slabs and footings, whose 
longitudinal reinforcement is normally next to the minimum allowable, 
the current formulations lead to results that might appear unworkable 
and unrealistic. The example provides evidence for a minimum to be 
imposed on the contribution of concrete as discussed in Section 4.10.3 
and its commentary.

Example 4.17

Calculate the minimum thickness required for a footing based on the 
shear strength. The 10 × 10 ft single footing supports a 24 × 24 in. 
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column with an ultimate axial load of Pu = 500 kip. The net soil pres-
sure under the footing is qu = 5 ksf. Assume f ′c = 5000 psi and a con-
crete cover (from the bar center) of 3 in. The flexural reinforcement 
properties are not known, but it is assumed that the design minima 
are met. The ultimate one-way shear at distance d from the face of the 
column can be calculated as

	 V1u (kip) = (5 ksf)(4 ft−d)(10 ft) = 200 – 50d (with d in ft)

	 ϕV1c (kip) ≥ (0.75)(0.8)√f ′cbwd = 61.1d (with d in ft)

	 Vu = ϕVc

	 d = 1.80 ft ≈ 22 in.

Assuming d = 22 in., the critical section for punching is

	 b1 = b2 = 22 in. + 24 in. = 46 in. = 3.83 ft

	 b0 = 2(b1 + b2) = 184 in.

And the ultimate two-way shear acting outside the critical section is

	 V2u (kip) = (5 ksf)(102 ft2 – 3.832 ft2) = 426.7 kip

	 ϕV2c (kip) ≥ (0.75)(1.6)√f ′cb0d = 343.5 kip < V2u (not adequate)

Try d = 25 in.

	 b1 = b2 = 25 in. + 24 in. = 49 in. = 4.08 ft

	 b0 = 2(b1 + b2) = 196 in.

And the ultimate two-way shear acting outside the critical section is

	 V2u (kip) = (5 ksf)(102 ft2 – 4.082 ft2) = 416.7 kip

	 ϕV2c (kip) ≥ (0.75)(1.6)√f ′cb0d = 415.8 kip ≈ V2u (OK)

Use a 30 in. footing with d = 27 in.

4.10.6  Shear friction

Shear-friction design is applicable where shear is transferred directly across 
a given plane such as the interface between concretes cast at different times 
and connections of precast constructions. The nominal shear strength, Vn, 
provided by reinforcement is computed as

	 Vn = Avf fvf μ	 (4.112)
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where Avf is the area of shear friction reinforcement perpendicular to the 
plane of shear and fvf is defined as

	 fvf = Ef εvf ≤ ffu	 (4.113)

Unless tests demonstrate otherwise, the recommended value for εfv is 0.003.
According to ACI 318-11, μ is the coefficient of friction. For the com-

mon case of normal weight concrete placed against hardened concrete 
surfaces:

	 μ = 0.6 (if the surface is not intentionally roughened)

	 μ = 1.0 (if the surface is intentionally roughened)

This formulation of shear friction provides a resistance considerably 
lower than what steel reinforcement can deliver. Hence, other param-
eters, such as compressive axial force transferred across the plane, or 
other devices and mechanisms, such as shear keys, may be considered to 
enhance the strength. In this case, the recommended total nominal shear 
strength is:

	 ( ) ( )= µ + µ + ′





2 2
V A f P Vn vf vf u n 	 (4.114)

where Pu ≥ 0 is the compressive axial force acting simultaneously with the 
transferred shear. V′n is the shear strength provided by other mechanisms. 
If Pu < 0 (tensile force), then

	
2 2V A f V Pn vf vf n u( )= µ + ′



 + µ 	 (4.115)

The reason that the contributions of reinforcement and other mech-
anisms are not considered to be directly additive is the relatively large 
deformations that are required to mobilize the normal force provided by 
reinforcement. Therefore, the presence of another mechanism may render 
the other partly ineffective. Finally, as always, Equation (4.86) has to be 
verified and other cases of shear design (ϕ = 0.75). An example of the appli-
cation of this design is presented in Chapter 5 for the case of a shear wall 
(Example 5.6).

4.10.7  Shear stresses due to torsion

The basic safety relationship at the ultimate limit state can be written as

	 ϕTn ≥ Tu	 (4.116)
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In Equation (4.116), ϕTn is the factored torsional strength of the member 
and is a function of the member geometry and the mechanical properties 
of the materials; the term “factored” means that the nominal calculated 
torsional capacity has been reduced by a strength-reduction factor applicable 
to torsion. The second term of Equation (4.116), Tu, is the factored torsion 
force resulting from the analysis of the member for applied loads ampli-
fied by the safety factors related to the acting loads. Because of the very 
limited experimental evidence related to torsion, ACI 318-11 provisions are 
proposed here as applicable to FRP RC construction for the case limited to 
pure torsion.

For normal weight concrete, it is permitted to neglect torsion effects if 
the factored torsional moment Tu is

	 φ ′






≥

2

f
A
p

Tc
cp

cp
u	 (4.117)

where the strength-reduction factor ϕ = 0.75, Acp, is the area enclosed by 
the outside perimeter, pcp, of the full concrete cross section. The value 
expressed by Equation (4.117) is known as threshold torsion.

When Tu exceeds the threshold torsion, in addition to the longitudinal 
reinforcement, closed stirrups have to be used such that Equation (4.118) 
is satisfied:

	 φ = ≥T
A A f

s
Tn

oh t ft
u

2
	 (4.118)

where Aoh is the area enclosed by centerline of the outermost closed trans-
verse torsional reinforcement and At is area of one leg of a closed stirrup 
resisting torsion within spacing s.

At the conclusion of the example shown in Chapter 7, sample calcula-
tions for torsion capacity are presented.

COMMENTARY

Very limited research on the torsional resistance of FRP RC members has 
been found in the technical literature. El-Awady, Husain, and Mandour [40] 
presented experimental as well as analytical investigations on the torsional 
behavior of 18 FRP RC beams tested under combined torsion and flexure. 
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The authors reported that the torsional resistance of the beams increased 
as the reinforcement ratio of the FRP longitudinal bars increased and that 
longitudinal GFRP and CFRP bars had comparable effectiveness to steel in 
torsion reinforcements.

Figure  4.18 shows an example of a GFRP RC beam tested in torsion. 
Figure 4.18(a) depicts the test setup while Figure 4.18(b) portrays the failure 
mode with the typical crack pattern due to torsion.

(a)

(b)

Figure 4.18 � Torsion test of concrete beam with GFRP bars and stirrups. (University 
of Sherbrooke, Sherbrooke, Quebec, Canada; courtesy of Prof. Brahim 
Benmokrane.)
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4.11 � TEMPERATURE AND SHRINKAGE 
REINFORCEMENT

No experimental data are available in the technical literature to establish 
the minimum FRP reinforcement ratio for shrinkage and temperature, ρf,ts. 
Accordingly, the following equation adopted from ACI 318-11 is proposed 
by ACI 440.1R-06:

	 ρ =
f

E
E

f ts
fu

s

f

0.0018
60,000

, 	 (4.119)

	 [or ρ =
f

E
E

f ts
fu

s

f

0.0018
414

,  in SI units]

where Es is the modulus of elasticity of steel. An upper bound equal to 
0.0036 and a lower bound equal to 0.0014 are also set for ρf,ts. The spacing 
of the shrinkage and temperature reinforcement should not exceed three 
times the slab thickness, or 12 in., whichever is smaller.

4.12 � SAFETY FIRE CHECKS FOR BENDING 
MOMENT CAPACITY

A recent publication by Nigro et al. [41] proposes a new methodology to 
perform fire safety checks for bending moment capacity of unprotected 
FRP RC flexural members exposed to fire on the side of the FRP bars 
under tension. The objective of this approach is to compute the bend-
ing moment capacity of the member taking into account the reduced 
FRP bar properties due to the exposure to high temperatures and the 
available  anchorage developable in the zones not directly exposed to 
the fire.

Nigro et al. propose the following equations to estimate the “average” 
deterioration factors for tensile strength and modulus of elasticity of CFRP 
and GFRP bars at a specific temperature T expressed in degree Celsius as 
shown in equations (4.120) and (4.121) [1°C = 5(1°F−32)/9].
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According to the authors, these equations can be used to estimate the 
reduced FRP tensile strength and elastic modulus at the temperature T 
reached by the bars after a fire exposure time t. This temperature can be 
estimated using the following equations where T is expressed in degree 
Celsius.

	
t T A c t

t T A c A c tA c
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) )
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( (

≤ = ⋅ +
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30min : 20

30min :

1

2 3
4

	 (4.122)

where c is the concrete cover in in., and the coefficients Ai(c) are defined 
as shown in Table 4.8.

In computing the bending moment capacity, Nigro et al. recommend 
adopting the concrete constitutive law suggested by EN1992-1-2 [42], 
which differs from the constitutive law typically used at normal tempera-
ture because it includes a strong softening branch.
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Table 4.8  Coefficients Ai

c (in.) A1 A2 A3 A4

0.787 11.538 −4586.1 4221.2 0.0470
1.18 8.032 −2326.8 1935.7 0.0854
1.58 5.685 −892.3 592.2 0.1774
2.00 3.997 −509.4 271.7 0.2561
2.36 2.792 −312.0 130.8 0.3400

Note:	 1 in. = 24.5 mm
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where f′c is the concrete compressive strength, εc1 is the strain correspond-
ing to f′c and equal to 0.0025, and εcu1 is the ultimate strain equal to 0.002.

The typical elastic-brittle stress-strain relationship is, instead, assumed for 
the FRP. The ultimate usable FRP tensile strength is the smaller of the reduced 
strength due to fire, computed per Equation (4.120), and the maximum stress 
developable by the end anchorage in zones not directly exposed to fire. Based 
on the work by Katz and Berman [43], it is assumed that for temperatures 
exceeding 122°F (50°C) the bond between concrete and FRP reinforcement 
becomes negligible. For this reason, in computing the maximum developable 
tensile stress, Nigro et al. recommend considering only the length of the end 
anchorage whose temperature does not exceed 122°F (50°C). The following 
equation provided by the Italian CNR Guidelines [44] is proposed.

	 f
l l

d
fd t

d d fi t T Tcr=
−

⋅
>

0.1,
, , , 	 (4.124)

where ld is the design development length, ld,fi,t,T>Tcr is the embedment length 
of a bar with a temperature exceeding 122°F (50°C), d is the bar diameter.

The development length ld,fi,t,T>50C is proposed to be computed as 
follows:

	 l B c B c td fi t T Tcr
B c) )( (= + ⋅ )(

>, , , 1 2
3 	 (4.125)

where t is the fire exposure time, c is the concrete cover in in., and 
the coefficients Bi(c) are computed based on thermal analysis results and 
reported in Table 4.9.

An application of this method is further discussed in Chapter 6 (Step 10).
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Chapter 5

Members subjected to combined 
axial load and bending moment

NOTATION

A1, A2	 =  �area of fiber-reinforced polymer (FRP) reinforcement along 
sides 1 and 2 of a rectangular section, in.2 (mm2)

Af 	 =  �area of FRP reinforcement, in.2 (mm2)
Af,bar 	 =  �area of one FRP bar, in.2 (mm2)
Ag	 =  gross cross sectional area of column, in.2 (mm2)
Afv 	 =  �amount of FRP shear reinforcement with spacing s, in.2 (mm2)
Afv,min 	=  �minimum amount of FRP shear reinforcement with spacing 

s, in.2 (mm2)
As 	 =  �area of tension steel reinforcement, in.2 (mm2)
Avf	 =  �area of shear friction reinforcement perpendicular to the plane 

of shear
a 	 =  �depth of equivalent rectangular stress block, in. (mm)
b 	 =  �width of rectangular cross section, in. (mm)
C	 =  compressive force, lb (N)
CE	 =  environmental reduction factor
c	 =  �distance from extreme compression fiber to the neutral axis of a 

fully cracked section, in. (mm)
D	 =  �diameter of circular cross section, in. (mm)
d	 =  �distance from extreme compression fiber to centroid of tension 

reinforcement, in. (mm)
db	 =  diameter of tie, in. (mm)
df 	 =  �effective depth of the FRP reinforcement
Ec 	 =  �modulus of elasticity of concrete, psi (MPa)
Es	 =  modulus of elasticity of steel, psi (MPa)
Ef 	 =  �design or guaranteed modulus of elasticity of FRP defined as 

mean modulus of sample population (Ef = Ef,ave), psi (MPa)
e	 =  ratio of εfu over εcu

f ′c	 =  �specified compressive strength of concrete, psi (MPa)
ff 	 =  �stress in FRP reinforcement in tension, psi (MPa)
ffd	 =  �design tensile strength (ffd = smaller of ffu or 0.01Ef), psi (MPa)
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fsf	 =  shear friction stress in reinforcement
ffu	 =  �design tensile strength of FRP, considering reductions for ser-

vice environment (ffu = CE f*
fu), psi (MPa)

f*
fu	 =  �guaranteed tensile strength of population FRP bar, defined 

as mean tensile strength of sample minus three standard 
deviations (f*

fu = ffu,ave – 3σ), psi (MPa)
ffv	 =  �tensile strength of FRP for shear design, taken as smallest of 

design tensile strength ffu, strength of bent portion of FRP 
stirrups ffb, or stress corresponding to 0.004Ef, psi (MPa)

fu, ave	 =  �mean tensile strength of sample population, psi (MPa)
h	 =  �overall height of rectangular member, in. (mm)
Ig	 = � moment of inertia of gross concrete section, neglecting rein-

forcement, in.4 (mm.4)
k	 =  Effective length factor
L	 =  �distance between joints in a slab on grade, ft (m)
L1, L2, LC	=  �arm in moment computation of columns, in. (mm)
lu	 =  clear height of the column, in. (mm)
lw	 =  length of shear wall, in. (mm)
MC	 =  �contribution of compressive force to nominal moment capac-

ity for circular section, lb-in. (N-mm)
Mnox	 = � nominal uniaxial moment strength about x-axis, lb-in. (N-mm)
Mnoy	 =  �nominal uniaxial moment strength about y-axis, lb-in. (N-mm)
Mnx	 =  �nominal biaxial moment strength about x-axis, lb-in. (N-mm)
Mny	 =  �nominal biaxial moment strength about y-axis, lb-in. (N-mm)
MT	 =  �contribution of tensile force to nominal moment capacity for 

circular section, lb-in. (N-mm)
Mn	 =  �nominal moment capacity, lb-in. (N-mm)
Mu	 =  �factored moment, lb-in. (N-mm)
nf	 =  �ratio of modulus of elasticity of FRP bars to modulus of 

elasticity of concrete
Pc	 =  axial force carried by concrete, lb (N)
Pn	 =  nominal axial capacity for non-zero eccentricity, lb (N)
Pn0, Po	 =  nominal axial load strength at zero eccentricity, lb (N)
Pnx	 =  �nominal axial load strength at given eccentricity along 

x-axis, lb (N)
Pny	 =  �nominal axial load strength at given eccentricity along 

y-axis, lb (N)
Po	 =  �nominal axial capacity for zero eccentricity, lb (N)
Ps	 =  axial force carried by steel, lb (N)
Pu	 =  ultimate axial force, lb (N)
r	 =  radius of gyration of the column, in. (mm)
rb	 =  radius of bend, in. (mm)
s	 =  �stirrup spacing or pitch of continuous spirals, and longitudi-

nal FRP bar spacing, in. (mm)
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T1, T2	 =  �tensile force corresponding to A1 and A2, lb (N)
T, Tmax	 =  �tensile force and maximum tensile force, lb (N)
Vc	 =  �nominal shear strength provided by concrete, lb (N)
Vf	 =  �shear resistance provided by FRP stirrups, lb (N)
Vn	 =  �nominal shear strength, lb (N)
Vu	 =  �factored shear force, lb (N)
x	 =  distance of N.A. from compression edge, in. (mm)
xb	 = � distance of N.A. from compression edge at balanced condi-

tion, in. (mm)
α	 =  �interaction contour parameter
α	 =  ratio of x over d
α1	 =  �ratio of average stress of equivalent rectangular stress block to f′c
β	 =  �ratio of distance from neutral axis to extreme tension fiber to 

distance from neutral axis to center of tensile reinforcement
β1	 =  �factor relating depth of equivalent stress block to neutral axis 

depth
εc	 =  �strain in concrete
εcu	 =  �ultimate strain in concrete
εf	 =  �strain in FRP reinforcement
εfd	 = � design strain for FRP reinforcement (εfd = smaller of εfu and 

0.01)
εfu	 =  �design rupture strain of FRP reinforcement (εfu = CE ε*

fu)
ε*

fu	 =  �guaranteed rupture strain of FRP reinforcement defined as 
the mean tensile strain at failure of sample population minus 
three standard deviations (ε*

fu = εu,ave – 3σ)
εv	 =  �shear friction strain in reinforcement
η	 =  �ratio of distance from extreme compression fiber to centroid of 

tension reinforcement (d) to overall height of flexural member (h)
γ	 =  ratio of d over h, or d over D
θC, θT	 =  �angles defining the compressive and tensile regions in a circu-

lar column (rad.)
ρf	 =  �FRP reinforcement ratio
ϕ	 =  �strength reduction factor
μ	 =  �coefficient of friction

5.1  INTRODUCTION

According to the current ACI 440.1R-06 [1] guide, reinforced concrete 
columns cannot be designed with FRP longitudinal bars and ties. Based on 
the work by Jawaheri and Nanni [2], this chapter discusses the theoretical 
approach at the basis of the behavior of FRP RC members subject to com-
bined flexural and axial loads. A new rationale to develop strength-reduction 
factors for simultaneous flexural and axial resistance that is consistent with 
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ACI 318-11 [3] is also presented. An example of the design of an FRP RC 
square column for a medical facility is illustrated in Chapter 9.

5.2  FRP BARS AS COMPRESSION REINFORCEMENT

The behavior of FRP bars as longitudinal reinforcement in compression 
members is still a relevant issue to be addressed and not yet covered by 
ACI 440.1R-06 [1]. Research studies, including the recent ones reported 
by Lofty [4] and Tobbi et al. [5], investigated the effect of the compressive 
behavior of longitudinal FRP bars by testing full-scale reinforced concrete 
columns subjected to pure compressive load. Different modes of failure 
(transverse tensile failure, fiber microbuckling, or shear failure) may char-
acterize the response of FRP bars in compression, depending on the type of 
fiber, fiber volume fraction, and type of resin. Testing of FRP bars in com-
pression is typically complicated by the anisotropic and nonhomogeneous 
nature of the FRP material that can lead to inaccurate measurements [6]. 
A standard test method for FRP bars to be used as compression reinforce-
ment in concrete has not yet been established.

COMMENTARY

Glass FRP (GFRP): This is the most commonly used FRP material system for 
internal reinforcement of FRP-reinforced concrete members. Experimental 
research studies [7–14] have investigated the effect of the compressive behav-
ior of longitudinal GFRP bars by testing reinforced concrete (RC) columns. 
Alsayed et al. [9] investigated the effect of replacing longitudinal steel bars 
(reinforcement ratio of 1.07%) and ties with an equal amount of GFRP bars 
and ties. Based on the results of tests performed on 17.7 × 9.8 × 47.2 in. 
(450 × 250 × 1200 mm) columns under concentric loads, it was reported that 
replacing longitudinal steel bars with GFRP bars reduced the capacity by 13%, 
irrespective of the type of ties (steel or GFRP). Replacing steel ties with GFRP 
ties reduced the capacity by 10%, with no influence on the load-deformation 
response up to approximately 80% of the ultimate capacity. Mirmiran [8] con-
ducted a parametric study for the analysis of slender GFRP RC columns. It 
was shown that even though GFRP RC columns are more susceptible to insta-
bility failure than steel RC columns, the design practice of using moment mag-
nification factors is also applicable to GFRP RC columns. In other research by 
Mirmiran, Yuan, and Chen [15], it was concluded that the slenderness limits 
should be lowered when using longitudinal GFRP reinforcement and a mini-
mum reinforcement ratio of 1% should be maintained. The overall conclusion 
of these studies is that GFRP RC columns are a doable application.
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5.3 � OVERALL DESIGN LIMITATIONS 
FOR FRP RC COLUMNS

The design recommendations provided in this chapter are based on the out-
comes of experimental studies that ultimately provide a convincing case to 
allow for the limited use of FRP bars in columns, particularly when corro-
sion resistance or electromagnetic transparency is sought. Given the novelty 
of the FRP RC technology for column design and construction, two limita-
tions in addition to the ones derived from ACI 318-11 [3] are applicable:

	 (a)	 The recommendations proposed for design and illustrated in this 
chapter apply to buildings with five or fewer stories aboveground and 
no more than one basement level.

	 (b)	 Although some experimental and analytical work has been performed 
in FRP RC beam–column joint performance [14,20], due to the lim-
ited availability of data in this field, the design provisions proposed 
herein are not applicable to structures in seismic zones. This is a limi-
tation that may be removed in the future based on the outcomes of 
more experimental evidence.

5.4 � REINFORCED CONCRETE COLUMNS 
SUBJECTED TO AXIAL LOAD

5.4.1  Steel RC columns

The American Concrete Institute (ACI) Building Code [3] bases the axial 
load capacity equation and the tie requirements for steel RC columns on 

Aramid FRP (AFRP): Kawaguchi [16] tested 12 concrete members reinforced 
with AFRP bars and subjected to eccentric tension or compression. He reported 
that AFRP RC columns can be analyzed using the same procedure as that for 
steel RC columns. Similarly, Fukuyama et al. [17] tested a half-scale three-story 
AFRP RC frame under quasi-static loading. AFRP bars were used for columns, 
beams, and slabs. The frame remained elastic up to a drift angle of 1/50 rad, and 
no substantial decrease in strength took place after rupture of some AFRP bars 
in a main beam due to the high degree of indeterminacy of the frame.

Carbon FRP (CFRP): Kobayashi and Fujisaki [18] tested columns reinforced 
with CFRP grids and determined that strain compatibility was maintained 
up to the crushing of concrete. CFRP grids were later used by Grira and 
Saatcioglu [19] as transverse reinforcement for columns tested under cyclic 
loading and it was concluded that their performance was comparable to that 
of columns reinforced with steel ties.
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research carried out at Lehigh University and the University of Illinois in 
the early 1930s (see reference 10). The maximum compressive stress that 
the concrete can develop at a strain beyond the yield point of the reinforc-
ing steel, fy, is taken equal to 85% of the compressive strength of a 6 by 
12 in. (152 by 308 mm) concrete cylinder. The nominal capacity of an axi-
ally loaded steel RC column, Po, is defined as the sum of the forces carried 
by the concrete, Pc, and the steel, Ps, as given by the following equation:

	 = + = ′⋅ + ⋅P P P f A A f Ao c s c g s y s0.85 ( – ) 	 (5.1)

where Ag is the gross cross-sectional area of the column, As is the area 
of the longitudinal steel reinforcement, and f ′c is the nominal compressive 
strength of the concrete. ACI 318-11 also requires that the vertical spacing 
of ties not exceed 16 longitudinal bar diameters (to prevent bar buckling), 
48 tie diameters (to ensure sufficient tie area to restrain the lateral displace-
ment of the longitudinal bars), or the least lateral dimension of the column 
(to develop the maximum strength of the concrete core).

COMMENTARY

Experimental studies performed between the late 1950s and early 1960s 
(referenced in De Luca, Matta, and Nanni [10]) showed that steel ties pro-
vide transverse constraint to the concrete core, allowing the column to 
fail in a more gradual manner than without ties. It was also found that ties 
offered sufficient restraint against buckling of the longitudinal bars up to 
compressive failure of the concrete, with negligible influence on the ulti-
mate load.

Few experimental studies have attempted to characterize the influence 
of the size of reinforced concrete columns on their structural behavior; 
however, the current ACI design specifications for RC columns neglect any 
size effect on the nominal axial strength. Bazant and Kwon [21] tested a 
total of 26 scaled RC columns of different sizes under eccentric axial load. 
The existence of a size effect on the ultimate capacity was observed and it 
was consistent with the fracture mechanics-based mathematical formula-
tion derived by Bazant [22]. Sener, Barr, and Abusiaf [23] tested a total of 
27 square RC columns with different scales and slenderness ratios under 
concentric axial load. The largest cross section had dimensions of 7.9 × 7.9 
in. (200 × 200 mm) and reinforcement ratio of 4.91%. It was found that a 
reduction in strength occurred at increasing size and slenderness, which was 
in good agreement with Bazant’s size-effect law. Nemecek and Bittnar [24] 
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5.4.2  FRP RC columns

As confirmed by other research programs [4,5], a recent study by De Luca et al. 
[10] on full-scale GFRP RC columns loaded in pure compression provided a 
compelling case to justify the applicability of ACI 318-based design recom-
mendations to FRP RC columns and, as a consequence, to modify existing 
design guidelines to allow for limited use of FRP bars in members subjected 
to axial load. The main conclusions of this work may be summarized as 
follows:

	 1.	The behavior of RC columns internally reinforced with GFRP bars 
was found to be similar to that of conventional steel RC columns 
when the longitudinal reinforcement ratio is equal to 1.0% and no 
appreciable difference could be determined in terms of ultimate 
capacity.

	 2.	The failure of the steel RC specimen appeared to happen due to buck-
ling of the longitudinal reinforcement when still in the elastic range, 
whereas the GFRP RC specimens failed due to the crushing of the 
concrete core at axial strains higher than those measured in the steel 
RC counterpart.

	 3.	For a reinforcement ratio of 1%, the contribution of the GFRP bars 
to the column capacity was found to be less than 5% of the ultimate 
load, which is significantly lower than that of about 12% of the steel 
bars in the steel RC counterpart.

	 4.	The spacing of the GFRP ties did not contribute to increasing the ulti-
mate capacity, but strongly influenced the failure mode by delaying 
the buckling of the longitudinal bars, initiation and propagation of 
unstable cracks, and crushing of the concrete core.

Transverse reinforcement for FRP reinforced members is typically in the 
form of coupled C-shaped bars and, less commonly, continuous spirals. 
Given the infancy of the technology and the lack of experimental evidence 
related to the potentially added confinement of spiral reinforcement, FRP 
spirals and ties are treated equally. Thus, the geometrical provisions related 
to ties are extended to spirals where the spiral pitch would coincide with 
the tie spacing.

tested square RC columns of three different scales, with maximum size of 
11.8 × 11.8 × 78.7 in. (300 × 300 × 2000 mm) and reinforcement ratio of 
2.18%, under eccentric axial load. No significant size effect was observed in 
the ultimate capacity.
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COMMENTARY

The experimental work by De Luca et al. [10] included a total of five 
specimens: one steel RC benchmark, and four GFRP RC columns. The 
specimens had a square cross section with 24 in. (610 mm) sides and length 
of 10 ft (3.0 m). The GFRP RC columns were subdivided into two sets of 
two; each set was identical to the other, but bars from different manufac-
turers were used.

The steel RC benchmark column was designed using the minimum amount 
of longitudinal reinforcement and the minimum tie cross-sectional area at 
maximum spacing as mandated by ACI 318-11. In particular, the total area 
of longitudinal bars was taken as 1.0% of the gross section area, Ag, choos-
ing eight no. 8 (25 mm) bars. No. 4 (12 mm) ties were used as transverse 
reinforcement at a spacing of 16 in. (406 mm) on center. For each set of 
two GFRP RC columns, bar size and total area of longitudinal reinforcement 
were adopted as for the steel benchmark. For the GFRP ties, the same bar 
size as their steel counterpart was used, but the spacing was reduced to 
12 in. (304 mm) and 3 in. (76 mm) when compared to the steel case. The 
12 in. (304 mm) spacing was selected to prevent longitudinal bars buckling, 
while the 3 in. (76 mm) spacing was chosen as the minimum practical spac-
ing for GFRP ties.

The GFRP RC specimens with the large tie spacing behaved similarly to the 
benchmark steel specimen. Failure typically initiated with vertical cracks—
followed, first, by lateral deflection of the longitudinal bars contributing to 
the splitting of the concrete cover and, then finally, by crushing of the con-
crete core and buckling of the longitudinal bars. In the case of the GFRP RC 
specimens with the smaller tie spacing, energy absorption and deformability 
were greatly increased as capacity decreased steadily after the peak load until 
the test was intentionally interrupted.

In all columns, the concrete compressive stress at peak was close to 0.85 f ′c, 
which is the value defined in ACI 318-11 as the average concrete compressive 
stress when an adequately tied column reaches its axial strength. The aver-
age load carried by the longitudinal GFRP reinforcement (assuming an equal 
modulus of elasticity for GFRP in tension and compression) ranged between 
about 2.9% and 4.5% of the peak load, whereas the average load carried by 
the longitudinal grade 60 (413 MPa) steel reinforcement was about 11.6% of 
the peak load.

The failure of the steel RC specimen appeared to be ultimately 
caused by the buckling of the longitudinal bars preceding crushing of 
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the concrete  core. Conversely, in the case of the GFRP RC specimens 
with smaller tie spacing, failure could be attributed to the crushing of the 
concrete core, while for all the GFRP RC specimens the relatively low 
contribution of the GFRP bars to the load-carrying capacity resulted in 
higher strains compared with the steel RC counterpart. Photographs of 
failed specimens are shown in Figure 5.1 (rectangular cross section) and 
Figure 5.2 (circular cross section).

(a) (b)

(c) 

Figure 5.1 � Concrete columns of rectangular cross section reinforced with GFRP longitudinal 
bars and ties. (a) overall view of failed column with 12-inch tie spacing; (b) detail 
of longitudinal bar buckling for column with 12-inch tie spacing; and (c) detail of 
longitudinal bar and tie rupture for column with 3-inch tie spacing; (De Luca, 
Matta, and Nanni. 9th International Symposium on Fiber Reinforced Polymer 
Reinforcement for Concrete Structures (FRPRCS-9), D. Oehlers, M. Griffith, and 
R. Seracino, eds., July 13–15, 2009, Sydney, Australia, CD-ROM, 4, 2010.)
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5.5 � DESIGN RECOMMENDATIONS FOR 
FRP RC COLUMNS

For the purpose of this book, only GFRP bars are covered in detail. The 
same considerations can be extended to the other types of FRP systems.

5.5.1  Minimum longitudinal reinforcement

A minimum reinforcement ratio of 1% is recommended as the lower threshold 
for a longitudinal bar reinforcement area. Longitudinal bar detailing require-
ments (i.e., spacing, minimum bar number, and minimum bar diameter) set 
by ACI 318-11 for steel reinforcement are applicable to FRP bars.

(c) Column specimens after failure 

 (a) MTS test frame with data-acquisition system (b) LVDTs and steel collars

Figure 5.2 � Circular concrete columns with GFRP longitudinal bars, hoops, or spirals 
under axial load. (University of Sherbrooke, Sherbrooke, Quebec, Canada; 
courtesy of Prof. Brahim Benmokrane.)
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COMMENTARY

Since 1936, the building code has required that the minimum reinforcement 
ratio be 0.01 of the gross area of concrete section. This minimum reinforce-
ment area was intended to prevent “passive yielding” of the steel, which 
occurs when load is transferred gradually from concrete to the reinforcement 
as the concrete creeps under sustained axial load [25]. Even though it appears 
to have become an outdated restriction for modern concrete and steel [26] 
and notwithstanding the consideration that GFRP does not yield, this require-
ment has been retained also for the case of GFRP reinforcement for analogy.

5.5.2 � Equivalency under compression between 
GFRP and concrete

Available test results indicate that the equivalency under compression 
between GFRP and concrete can be assumed.

COMMENTARY

With reference to the behavior of FRP bars in compression, it is known that 
their testing is complicated by the anisotropic and nonhomogeneous nature 
of the FRP material, which can lead to inaccurate measurements [27]. For 
the case of GFRP bars in particular, reductions in the compressive strength 
and elastic modulus by up to 45% and 20% with respect to the values in ten-
sion, respectively, have been reported [28]. Similar results were reported for 
GFRP bars by Deitz, Hark, and Gesund [29], who indicated that the com-
pressive to tensile strength and modular ratios were approximately 50% and 
100%, respectively. Accordingly, GFRP mechanical characteristics exceed 
those of concrete in compression and, therefore, the equivalency between 
the two materials when performing analysis and design is justifiable [6].

5.5.3  Limit on maximum tensile strain in GFRP

The tensile design strain of the longitudinal GFRP bars is limited to 0.01. 
This provision is made more general by defining the ultimate design strain, 
εfd and corresponding design strength, ffd, as

	 ( ,0.010)Minfd fuε = ε 	 (5.2)

	 ( ,0.010 )f Min f Efd fu f= 	 (5.3)
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COMMENTARY

The tensile rupture strain of GFRP bars exceeds 2%. Such an ultimate 
strain would lead to unacceptably large deformations, if the full tensile 
capacity of the bars were to be achieved. To avoid this, it is recommended 
[2] that, for design purposes, the ultimate design strain not exceed a fixed 
limit of 1%.

5.5.4 � Limit on maximum spacing of 
transverse reinforcement

As a result of the different characteristics between GFRP and steel, the 
spacing (or pitch) of the transverse reinforcement, smax, should be limited to 
the least of the following quantities:

•	 Least dimension of the column (same as ACI 318-11)
•	 Twelve longitudinal bar diameters (75% of the limit in ACI 318-11)
•	 Twenty-four tie bar diameters (50% of the limit in ACI 318-11)

COMMENTARY

The spacing between ties can be related to the diameter of the longitudinal 
bars by a simplified model that assumes that the bar is a compressive member 
simply supported between two adjacent ties. The lateral support provided by 
the concrete cover is neglected as, at the point of failure, the loss of cover is 
very probable. For such a member to reach a strain level of ε without buck-
ling, this condition must be upheld:

	 EI
s

AE
2

2

π ≤ ε � (5.4)

where s is the spacing of the ties, I and A are the moment of inertia and the 
area of the longitudinal bars, and E is their modulus of elasticity. For a solid 
round bar of diameter db, this can be rewritten as

	 s
d

4
b

max = π
ε

� (5.5)
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5.5.5  Modified column stiffness

Simplified expressions like the ones adopted by ACI 318-11 for steel RC 
members are herein proposed for GFRP RC members. In the analysis stage 
of ordinary steel RC frames, the flexural stiffness of the members is modi-
fied to account for cross-section cracking. When a GFRP RC frame is ana-
lyzed, owing to the different mechanical properties of GFRP and steel, 
these modifications need to be adjusted to incorporate GFRP reinforce-
ment effects. This section presents modification factors for the moment 
of inertia of GFRP RC members that are styled after those of ACI 318-11. 
ACI 318-11 recommends that the internal forces and the lateral deflections 
of RC frames resulting from factored loads be computed by linear analysis 
with modified moments of inertia, I, of the members, as follows:

Steel RC flexural members:

	 Ibeam = 0.35Ig	 (5.6)

	 Islab = 0.25Ig	 (5.7)

For any flexural member, a more accurate formulation is

	 Iflexure = (0.10 + 25ρ) (1.20 – 0.20bw/d) Ig ≤ 0.50Ig	 (5.8)

Steel RC columns:

	 Icolumn = 0.7Ig� (5.9)

A more detailed approach is

	 (0.80 25 ) 1– – 0.5 0.875column
0

I
M
P h

P
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I Ist
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u
g g= + ρ 
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


≤ 	 (5.10)

For steel bars to yield before buckling, ε = εy ≈ 0.002, which leads to smax ≈ 
17.5db, a value in good agreement with the ACI 318-11 provision (smax ≤ 16db). 
For GFRP bars to avoid buckling before concrete crushing, ε = εcu = 0.003 
and, therefore, smax ≈ 14db. This lower value justifies the more stringent provi-
sion adopted for GFRP bars (smax ≤ 12db).

The spacing is also related to the diameter of tie bars to achieve a desired 
level of concrete confinement at the core of the column. From this viewpoint, 
De Luca et al. [10] suggest that for GFRP RC columns, the tie spacing of ACI 
318-11 as controlled by tie diameter must be halved from 48 to 24 tie bar 
diameters in consideration of the lower stiffness of GFRP.
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Based on the current provisions of ACI 318-11 shown previously, similar 
provisions are proposed for the case of GFRP RC members as follows:

GFRP RC flexural members: It can be reasoned that for GFRP RC flex-
ural members, Equation (5.8) may be written as

	 0.10 25 1.20 – 0.20 0.50flexureI
E
E

b
d

I If
f

s

w
g g= + ρ



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



 ≤ 	 (5.11)

Therefore, from the comparison of a GFRP RC flexural member to a 
geometrically similar steel RC member, Equations (5.8) and (5.11), it can 
be concluded that

	
0.10 25

0.10 25
FRP

steel flexure

I
I

E
E

f
f

s

f





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=
+ ρ

+ ρ
	 (5.12)

The ratio of the moments of inertia decreases as a function of the rein-
forcement ratio ρf. Thus, to obtain a conservative estimate independent of 
the reinforcement ratio, a heavily reinforced beam or slab may be consid-
ered. Substituting the following into Equation (5.12):

•	 Equation (5.6) and an average of ρf = 1.5% for beams
•	 Equation (5.7) and an average of ρf = 0.5% for slabs

and rounding the results, the modified moments of inertia for GFRP RC 
flexural members can be expressed as
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≤ 	 (5.13)
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GFRP RC columns: The generalized form of Equation (5.10) for GFRP 
RC columns is
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and, from Equations (5.10) and (5.15), if two columns are compared that 
only differ in the type of reinforcement,
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Substituting Equation (5.9) and an average of ρf = ρst = 2.5%, after 
rounding, Equation (5.16) can be simplified as
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≤ 	 (5.17)

Similarly to ACI 318-11, lateral deflections resulting from service lateral 
loads may be computed by a linear analysis using 1.4 times the flexural 
stiffness defined in Equation (5.17).

5.5.6  Slenderness effects

The definitions of non-sway and sway frames adopted here for GFRP RC 
conform to ACI 318-11. In fact, a frame can be considered non-sway (i.e., 
braced) when the column end-moments due to second order effects do not 
exceed 5% of the first-order end-moments.

Sway column: According to ACI 318-11 [3], the effects of slenderness for 
compression members in a sway frame may be neglected when the slender-
ness ratio (klu/r) is less than 22. Mirmiran et al. [15] showed that for GFRP 
RC columns not braced against side sway, this limit should be reduced to 17. 
This value is therefore recommended as the new threshold for neglecting 
slenderness effects for a GFRP RC column free to sway.

Non-sway column. The effects of slenderness in a steel RC column in a 
non-sway frame may be neglected if
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where M2 is the larger end-moment and M1 is the smaller end-moment. M1 
and M2 are factored end-moments obtained by an elastic frame analysis 
and the ratio M1/M2 is positive if the column is bent in single curvature and 
negative if bent in double curvature.

Taking into account the conclusion by Mirmiran et al. [15], Equation 
(5.18) can be modified so that the effects of slenderness in GFRP RC col-
umns may be neglected when
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5.6  BENDING MOMENT AND AXIAL FORCE

Based on the existing knowledge, the design of concrete columns with rectan-
gular or circular cross sections using FRP longitudinal bars and ties appears 
doable and a design methodology is presented as follows. As the basis of this 
methodology, the following considerations and assumptions are made:

•	 The strength of a GFRP RC cross section under combined flexure and 
axial load can be calculated by satisfying strain compatibility.

•	 GFRP longitudinal reinforcement is considered effective only in ten-
sion. The maximum design tensile strain of longitudinal bars must be 
less than 0.01 to limit lateral deflections.

•	 The area of the FRP reinforcement subject to compression is replaced 
with an equivalent area of concrete as if the FRP bars in compression 
were not present in the cross section.

•	 A modified and unified formulation of the strength-reduction factor 
for the interaction diagram is derived using comparative target reli-
ability indices to meet appropriate safety requirements.

•	 Based on ACI 440.1R-06, the contributions of concrete, Vc, and ties, 
Vf, to the total shear strength, Vn, are reformulated to accommodate 
the case of column cross sections.

The combined nominal moment and axial force (Mn, Pn) are multiplied by 
the appropriate strength-reduction factor, ϕ, to obtain the design strength 
(ϕMn, ϕPn) of the cross section. The design strength must be equal to or 
greater than the factored ultimate moment and axial load:

	 (ϕMn , ϕPn) ≥ (Mu , Pu)	 (5.20)

The factored pair of ultimate moment and axial load (Mu, Pu) denotes the 
effects of the various combinations of loads to which a structure is subjected.

Similarly to steel RC columns, an “interaction diagram” can be gener-
ated by plotting the nominal axial force strength, Pn, against the corre-
sponding nominal moment strength, Mn. This diagram defines the strength 
of a cross section at different eccentricities of the load, which must encom-
pass all the points associated with (Mu, Pu). With such assumptions, typical 
design interaction diagrams, (ϕMn, ϕPn), may be formulated as shown in the 
following section.

5.6.1 � Interaction diagram for rectangular 
cross section

This section summarizes a procedure to build the interaction diagram of 
a rectangular cross section in a way that is similar to what is typically 
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done for steel-reinforced cross sections. Differently from the steel case, 
the contribution of the FRP reinforcement placed in the compression 
zone is replaced by that of concrete. The assumed parameters and the 
geometry of the generic cross section are displayed in Figure  5.3. For 
the computation of the combined nominal axial and moment capacities 
(Pn, Mn), the compressive force is assumed to be positive and the moment 
is assumed to act around the center line (C.L.) of the cross section. For 
the analysis, it is also assumed that the GFRP reinforcement is symmetri-
cal with respect to both the horizontal and vertical cross-sectional axes 
and can be approximated by a thin rectangular tube. With reference to 
Figure  5.3, A1 is the GFRP area of the top or bottom side; A2 is the 
area of one vertical side; Lc is distance from C.L. of the centroid of the 
concrete compressive zone; L1 is the distance from C.L. of the centroid 
of the tensile (bottom) reinforcement; and L2 is the distance from C.L. 
of the centroid of the tensile side reinforcement neglecting the portion 
above the neutral axis.

The interaction diagram can be constructed by locating a few critical 
points as enumerated next. The succession of points is according to the 
level of axial load: from maximum tensile load to maximum compressive 
load or, equally, according to x, the location of the neutral axis (N.A.). 
Failure is either initiated by the FRP tensile limit (εf = εfd)—called tensile 
rupture from here on—or by concrete crushing (εc = εcu), which are referred 
to, respectively, as tension controlled and compression controlled modes 
of failure.

	 1.	x = –∞. The maximum tensile force constitutes the lowermost point of 
any interaction diagram and is one of the two points corresponding to 
zero eccentricity. If εf = εfd:

	 Pn = Tmax = –2(A1 + A2) ffd; Mn =0	 (5.21)

A1

A2

A1

A2

b

h d
NA NA

CLCL

* Lc

L1
L2

x βx

Figure 5.3 � Cross section of a rectangular column with N.A. within the cross section.
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	 2.	x = 0. Since the entire cross section is in tension, FRP bars are the 
only component engaged in resisting the load. Therefore, failure is 
triggered by rupture in the extreme layer of reinforcement (εf = εfd). 
Furthermore, due to the linear behavior of the reinforcement, the por-
tion of the interaction curve from the point (1) to (2) is linear. The 
load and moment can be calculated from the traditional equations 
regarding the combined effect of axial load and bending moment on 
a section with linear behavior:

	 P
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fn fd– 1 2= +
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	 (5.22)
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where γ = d/h.

	 3.	xb ≤ x ≤ d. The two modes of failure (i.e., tension and compression 
controlled modes) are separated by the “balanced failure,” when FRP 
ruptures and concrete crushes, simultaneously. xb marks the location 
of the neutral axis for such a balanced condition and can be calcu-
lated as
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If the neutral axis is situated beyond the balanced location (x ≥ xb), 
the failure mode shifts from tension to compression and starts 
with concrete crushing. Assuming that xb lies within the rein-
forced area (i.e., xb ≥ h-d = concrete cover), which is normally the 
case, a range that covers both conditions can be defined in terms 
of dimensionless parameters:
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For any arbitrary α within this range, the forces in concrete and bars 
and their corresponding lever arms may be calculated as
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	 (5.28)

	 Pn = C–T1–T2		  (5.29)

	 Mn = CLc + T1L1 + T2L2	 (5.30)

	 4.	d < x ≤ h. If the neutral axis lies within the concrete cover on the ten-
sion side, then the contribution of the reinforcement vanishes from 
the equations presented in (3). For example, if x = h or α = 1/γ:

	 0.85 ; (1– )
2

1 1C f bh L
h

c c= β ′ = β 	 (5.31)

	 T1 = T2 = 0	 (5.32)

	 Pn = C; Mn = CLc	 (5.33)

	 5.	x = +∞. The maximum compressive force is the uppermost point of 
any interaction diagram and is the other point corresponding to zero 
eccentricity:

	 Pn = P0 = 0.85 f ′c bh; Mn = 0	 (5.34)

These points provide a set of nominal moment-axial force couples, 
(Mn, Pn), that allows for the generation of a sufficiently smooth 
and accurate interaction diagram.

5.6.2  Interaction diagram for circular cross section

A procedure similar to the one discussed for rectangular cross sections is 
presented for the circular ones. Figure 5.4 displays the assumed parameters 
and the geometry of a generic section. For the analysis, the area of FRP 
reinforcement is uniformly distributed along the circumference as if it were 
a continuous thin tube.

Similarly to a rectangular cross section, the interaction curve can be con-
structed based on selected Mn–Pn pairs calculated at certain positions of the 
neutral axis as presented next.

	 1.	x = –∞. Maximum tensile force:

	 Pn = Tmax = –Af ffd ; Mn = 0	 (5.35)
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	 2.	x = 0. When failure is initiated by rupture in the extreme layer of 
reinforcement (εf = εfd):
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where γ = d/D.

	 3.	xb ≤ x ≤ d. Again, xb marks the location of the neutral axis for bal-
anced failure:
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Also, for the neutral axis to be located in the reinforced region,
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For any arbitrary α within this range, the forces and moments may 
be calculated as
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where cos θC = 1-2αβ1γ and 0 ≤ θC ≤ π.
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Figure 5.4 � Cross section of a circular column with N.A. within the cross section.
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where cos θT = (1−2αγ)/(2γ−1) and 0 ≤ θT ≤ π.

	 Pn = C–T	 (5.44)

	 Mn = Mc + MT	 (5.45)

	 4.	d < x ≤ D. If the neutral axis lies within the concrete section, but 
beyond the reinforced area, then the contribution of the reinforce-
ment vanishes from the equations presented in (3). For example, if 
x = D or α = 1/γ:
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where cos θC = 1−2β1 and 0 ≤ θC ≤ π.

	 5.	x = +∞. Maximum compressive force:
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5.6.3  Example—P–M diagram

Example 5.1

Calculate the nominal interaction diagrams of a square column and a 
circular one with the following geometry and materials:

Square column: b × h = 24 × 24 in. (610 × 610 mm)
Circular column: D = 24 in. (610 mm)

Cover to the center of bars: 2.5 in. (63.5 mm)

Continued
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Concrete: f   ′c = 4000 psi (27.6 MPa);
β1 = 0.85

Reinforcement: ffu = 60 ksi (413 MPa); 
Ef = 6000 ksi (41.3 GPa);
εfu = ffu/Ef = 0.01 therefore:
ffd = 60 ksi (413 MPa); εfd = 0.01

Square column: A1; A2; = 4#8 = 3.14 in.2 (2026 mm2);
2#8 = 1.57 in.2 (1012 mm2)

Square column: Af = 2(A1 + A2) = 12#8 = 9.42 in.2 
(6077 mm2)

Circular column: Af = 12#8 = 9.42 in.2 (6077 mm2)

The design strength of GFRP, ffd, is deliberately selected equal to the 
yield strength of ordinary grade 60 steel bars, fy = 60 ksi (413 MPa), so 
that the effects of the two reinforcing materials (i.e., GFRP and steel) 
can be compared.

Figure  5.5 shows the construction of the P–M diagram based on 
six critical points (a) to (f) for the GFRP RC rectangular cross section 
and compares it to that of a similar section with grade 60 steel bars. 
Understandably, the compressive strength of steel and its yielding abil-
ity allow its interaction diagram to surround the diagram associated 
with GFRP bars.
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Figure 5.5 � Interaction diagrams of GFRP and steel RC columns (square cross section).
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Similarly, Figure 5.6 shows the interaction diagrams for the circular 
cross section reinforced with the same number of GFRP and steel bars. 
The considerations made for the rectangular cross section hold here. It 
should be noted that the balanced condition for the GFRP RC column 
occurs when the axial force produces tension. This is generally the case 
for large values of the reinforcement ratio (ρf ≥ 2%).

5.7 � STRENGTH-REDUCTION FACTOR FOR 
COMBINED BENDING MOMENT 
AND AXIAL FORCE

As ACI 440.1R-06 [1] is silent about columns, the method presented herein 
to calculate the strength-reduction factor for columns relies on a reliability 
analysis study as discussed in detail in Chapter 4. This method aims to 
unify the strength-reduction factors of columns and flexural members as a 
function of the maximum tensile strain in the reinforcement. The proposed 
formulation to compute the ϕ-factor is the following:

	 ≤ φ = −
ε
ε

≤
fd

0.65 1.15
2

0.75ƒ
	 (5.49)

εf in Equation (5.49) is the tensile strain taken as positive.
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Figure 5.6 � Interaction diagrams of GFRP and steel RC columns (circular cross section).
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When multiple levels of reinforcement are considered, the ϕ-factor is com-
puted based on the reinforcement level subjected to the largest tensile 
strain.

Per ACI 318-11 steel tied columns, the design compressive strength of a 
GFRP RC column should be limited to 0.8ϕPn. For the case of GFRP RC, 
this limit is extended to include spirally reinforced columns.

Typical P–M diagrams are shown in Figure 5.7 through Figure 5.9. The 
interaction diagrams in Figures 5.7 and 5.8 are built for the same rectangu-
lar section with bending moment around the strong axis (x-axis) and weak 
axis (y-axis), respectively. The interaction diagram in Figure 5.9 is relative 
to a circular section having the same concrete area and amount of GFRP 
reinforcement of the rectangular one.
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5.8 � COLUMNS SUBJECTED TO AXIAL 
LOAD AND BIAXIAL BENDING

A column is subjected to biaxial bending when equally significant bend-
ing moments act in two orthogonal directions. For the design of an FRP 
RC rectangular cross section subjected to moments about two axes, the 
same approach valid for steel RC appears to be applicable. Two analysis 
methods are herein proposed. They are the reciprocal load method and 
the load contour method. Both methods refer to a three-dimensional (3-D) 
failure surface to describe the interaction of the nominal axial load and the 
nominal biaxial bending moments. For example, the interaction surface for 
compression combined to biaxial bending is illustrated in Figure 5.10.
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Bresler’s reciprocal load method. ACI 318-11 references the following 
equation originally developed by Bresler [30] to compute the column capac-
ity under axial load and biaxial bending:

	
1 1 1

–
1

0P P P Pn nx ny n

= + 	 (5.50)

where Pn is the approximation of the nominal axial capacity applied for 
eccentricities ex and ey; Pnx and Pny are the nominal axial capacities for 
eccentricities ey along the y-axis and ex along the x-axis, respectively; and 
Pn0 is the nominal axial capacity for zero eccentricity. This procedure is 
acceptably accurate for design purposes provided that Pn is larger than 
0.10 Pn0.

Load contour method. The load contour method uses the load contour 
defined by a plane at a constant value of Pn intersecting the 3-D (Pn, Mnx, 
Mny) interaction diagram. The adimensional expression of the load contour 
Mnx, Mny at a generic value of Pn is the following:
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	 (5.51)

with a suggested value of α ≤ 1.0 for the case of FRP RC. This equation is 
still valid if the ϕ-factors are applied.

In the case of α≠1.0, it is deemed justifiable for practical purposes that 
Equation (5.51) be simplified by a bi-linear curve as proposed by Parme 
et al. [31] based on the assumption illustrated in Equation (5.53):
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	 (5.52)

	 Mnx = βMnox if Mny = βMnoy	 (5.53)

where β is the constant portion of the uniaxial moment capacities that may 
act simultaneously on the column section. β usually ranges between 0.55 
and 0.70, with a value of 0.50 recommended for design of FRP RC members. 
The load contour expression in Equation (5.52) is illustrated in Figure 5.11. 
For design, the load contour can be approximated by straight lines.

5.9  SHEAR STRENGTH, Vn

The nominal shear strength of a column, Vn, is the sum of the contributions 
of concrete, Vc, and FRP ties (or spiral), Vf:

	 Vn = Vc + Vf	 (5.54)
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5.9.1 � Concrete contribution, Vc, for 
rectangular sections

According to ACI 440.1R-06, the concrete shear capacity, Vc, of flexural 
members using FRP as main reinforcement can be evaluated as

	 5V k f b dc c w= ′ 	 (5.55)

	 [or 
2
5

V k f b dc c w= ′  for SI Units]

where k is the ratio of depth of neutral axis to reinforcement depth, d. For 
members with only one layer of tensile reinforcement, k is calculated according 
to ACI 440.1R-06 as

	 2 –
2

k n n nf f f f f f( ) ( ) ( )= ρ + ρ ρ 	 (5.56)

where ρf is the ratio of the longitudinal FRP bars and nf is the modular 
ratio: nf = Ef/Ec.

For columns, however, multiple layers of longitudinal reinforcement ren-
der Equation (5.56) inaccurate. To generalize the Vc formulation for rect-
angular columns, the location of the neutral axis in a cracked section can 
be calculated by equalizing the first moments of area of the compressive 
and transformed tensile portions of the cross section around a separating 
neutral axis located at x = kd. This equation can be written as
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Figure 5.11 � Adimensional load contour at a constant Pn.
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	 2( ) 1– 2( )
2 –1

(1– )2
1 2

2k n k n kf f f f( )= ρ + ρ γ
γ 	 (5.57)

where ρf1 = Af1/bd and ρf2 = Af2/bd (See Figure 5.3 for the definitions of Af1 
and Af2.) and γ = d/h.

Note that the last term of Equation (5.57) accounts for the presence of 
the two side layers of reinforcement. Although this equation can be solved 
for the exact value of k, the final closed-form solution is rather unwieldy. 
Since the exact value of k is of little practical importance, a simpler itera-
tive solution is suggested as an alternative. Defining the “effective” tensile 
reinforcement ratio, ρf, as

	
(1– )
2 –11 2

k
f f fρ = ρ + γ

γ
ρ 	 (5.58)

and starting with an initial guess for k (k = 0.2 is recommended), Equation 
(5.56) can be used repetitively with Equation (5.58) until convergence to 
calculate k.

Equation (5.55) provides a conservative estimate of the concrete contri-
bution, Vc, if the column is subjected to a compressive axial force. In the 
uncommon case of tensile axial force, the use of this equation remains valid 
with the appropriate value of kd. To attain this, Equation (5.59) must be 
employed, which, with negligible approximation, predicts the location of 
the neutral axis, c, under the combined effects of axial load and flexure 
based on the value of k calculated from Equation (5.57):
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where Pu and Mu are the ultimate axial load and moment corresponding 
to Vu. Compressive axial force is positive and tensile axial force is nega-
tive while the moment is always positive. With c from Equation (5.59) and 
noting that c = kd, Equation (5.55) may be used to achieve an accurate 
assessment of the shear strength provided by concrete when the section is 
subjected to a tensile axial force.

5.9.2 � Shear reinforcement contribution, 
Vf , for rectangular sections

Once Vc is calculated, the shear strength provided by ties (or spiral) of 
the column, Vf, can be calculated as discussed in Chapter 4 and shown in 
Equation (5.60):

	 V
A f d

s
f

fv fv= 	 (5.60)
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Afv is the area of FRP ties with a spacing of s (or spiral with a pitch of s). 
For FRP RC columns, the spacing is limited to the least dimension of the 
column, 12 longitudinal bar diameters or 24 tie bar diameters. Other 
parameters are only briefly discussed herein as they are similar to flexural 
members. The tensile strength of the FRP tie for shear design, ffv, is calcu-
lated as

	 ffv = 0.004Efv ≤ ffb	 (5.61)

where Efv is the modulus of elasticity of the FRP ties. To prevent loss of 
aggregate interlock in the concrete as the result of a wide crack, the maxi-
mum usable tensile strain of the FRP ties is limited to 0.004. ffb, strength of 
the bent portion of FRP tie, depends on rb/db, the ratio of the internal radius 
of the bend to the diameter of the tie, which has to be at least equal to 3, 
the minimum recommended by the ACI 440.1R-06 guidelines. ffb is given 
by the following expression:

	 0.05 0.3f
r
d

f ffb
b

b
fu fu= +



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≤ 	 (5.62)

where ffu is the tensile strength of the straight portion of the GFRP tie.

5.9.3  Shear strength-reduction factor

Jawaheri Zadeh and Nanni [32] showed that the current shear strength-
reduction factor of 0.75 may be maintained so long as the maximum effec-
tive level of shear resistance of a member with FRP shear reinforcement 
does not exceed four times the strength provided by concrete (Vn ≤ 4Vc 
or, equally, Vf ≤ 3Vc). Accordingly, the shear strength-reduction factor for 
columns is 0.75.

5.9.4  Examples—Shear strength for square columns

Example 5.2

Calculate the design shear strength of the following square column 
with no Pu effect:

Concrete: f´c = 4.0 ksi
Ec (ksi) = 57 √f ′c (psi) = 3600 ksi

Longitudinal GFRP reinf.: ffu = ffd = 60 ksi
Ef = 6000 ksi

Continued
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Af = 12#8 = 9.42 in.2

Af1 = 4#8 = 3.14 in.2

Af2 = 2#8 = 1.57 in.2

GFRP shear reinforcement: ffu = 60 ksi
Efv = 6000 ksi
Afv = #3@8 in.
rb /db = (rb /db)min = 3.0

Size: b = 24.0 in.	 Width of the column
h = 24.0 in.	 Height of the column
cc = 2.5 in.	� Concrete cover from 

bar center
d = h−cc = 21.5 in.	 Effective depth

Solution:
Concrete contribution, Vc: ρf1 = Af1/(bd) = 0.00609

ρf2 = Af2/(bd) = 0.00304
γ = d/h = 0.896

Assuming k = 0.2 and using

Equation (5.58):	 ρf = 0.00884

	 nf = Ef /Ec = (6000 ksi)/(3600 ksi) = 1.67

	 nf ρf = 0.01476

and k can be calculated according to Equation (5.56) as

	 k = 0.158

The new value of k is of sufficient accuracy, but to demonstrate the 
convergence trend, another step is performed:

Assuming k = 0.158 and using Equation (5.58):
ρf = 0.00899
nf ρf = 0.01501
k = 0.159
c = 3.42 in.
Vc = 26.0 kip

Shear reinforcement contribution, Vf:
Afv = #3@8 in. = 0.22 in.2

s = 8.0 in.

Continued
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ffv = 0.004Efv = 24 ksi ≤ ffb

ffb = (0.05rb/db + 0.3) ffu ≤ ffu

ffb = 0.45ffu = 27.0 ksi
ffv = 24.0 ksi
Vf = Afv ffvd/s = 14.2 kip

And the nominal shear strength:
Vn = Vc + Vs = 40.2 kip

ϕVn = 30.2 kip

Example 5.3

Calculate the concrete shear strength Vc of the square column in 
Example 5.2 for various values of Pu, Mu when accounting for the 
effect of the axial load. In Example 5.2, the shear strength of the col-
umn is calculated disregarding the axial load. To account for the effect 
of the axial load, Equation (5.59) is used to evaluate c/d that replaces k 
= 0.159, calculated in Example 5.2. Therefore:

	 0 ≤ c/d = 0.159 + 0.01197 (Pud/Mu) ≤ 0.4

The contribution of concrete to the shear strength is calculated for 
the loading cases that follow:

1. No axial force c/d = 0.159 c = 3.42 in. Vc = 26.0 kip
2. Mu = 0, tensile force c/d = 0 c = 0 Vc = 0
3. Mu = 0, compressive 

force
c/d = 0.4 c = 8.6 in. Vc = 65.3 kip

4. Pu = 500 kip, 
Mu = 100 ft-kip

c/d = 0.266 c = 5.72 in. Vc = 43.4 kip

5. Pu = 500 kip, 
Mu = 200 ft-kip

c/d = 0.213 c = 4.58 in. Vc = 34.8 kip

6. Pu = 500 kip, 
Mu = 300 ft-kip

c/d = 0.195 c = 4.19 in. Vc = 31.8 kip

5.9.5  Circular sections

For circular sections, the same equations introduced in rectangular sections 
to compute shear contributions of concrete and transverse reinforcement 
can be used, if an equivalent rectangular section is defined as

	 bw = D; d = 0.8D; A1 = A2 = Af  / 4	 (5.63)

The equivalent dimensions replicate the provisions of ACI 318-11 for 
shear strength of circular sections. Similarly, the strength-reduction factor 
of rectangular sections equal to 0.75 applies to circular ones under the 
same limitations for Vc and Vf.



Members subjected to combined axial load and bending moment  183

5.9.6 � Example—Shear strength for circular columns

Example 5.4

Repeat Example 5.2 for a circular column with the same concrete area 
(D = 27 in.) and reinforcement with no Pu effect:

Concrete: f ́ c = 4.0 ksi
Ec (ksi) = 57√f ́ c (psi) = 3600 ksi

Longitudinal reinf.: ffu = ffd = 60 ksi
Ef = 6000 ksi
Af = 12#8 = 9.42 in.2

Af1 = Af2 = 3#8 = 2.36 in.2

Shear 
reinforcement:

ffu = 60 ksi

Efv = 6000 ksi
Afv = #3@8 in.

Size: D = 27.0 in.  Diameter of the column
cc = 2.5 in.  Concrete cover to the center of #8

Solution:
Concrete contribution, Vc:

d = 0.8D = 21.6 in.
b = D = 27 in.
ρf1 = ρf2 = Af1/(bd) = 0.00405
γ = (D-cc)/D = 0.907

Assuming k = 0.2
ρf = 0.00766
nf = Ef  /Ec = (6000 ksi)/(3600 ksi) = 1.67
nf ρf = 0.01280

And k can be calculated according to Equation (5.56) as:
k = 0.148

Assuming k = 0.148 and using Equation (5.58):
ρf = 0.00789
nf ρf = 0.01317
k = 0.150
c = kcd = 3.24 in.
Vc = 27.7 kip

Shear reinforcement contribution, Vf:
Afv = #3@8 in. = 0.22 in.2

s = 8.0 in.
ffv = 0.004Efv ≤ ffb

ffb = (0.05rb/db + 0.3) ffu ≤ ffu

Continued
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rb can be calculated as:
rb = (D-2cc + 1 in.)/2 = 11.5 in.

Where cc = concrete cover to the center of #8
rb/db = 30.7
ffb = ffu = 60.0 ksi
ffv = 24.0 ksi
Vf = Afv ffvd/s = 16.0 kip

And the nominal shear strength:
Vn = Vc+Vs = 43.7 kip

ϕVn = 32.8 kip

5.9.7  Shear walls

The in-plane shear strength of walls can be calculated similarly to columns; 
however, for most cases Equation (5.58) can be simplified to obtain a more 
straightforward solution. For a shear wall, the in-plane horizontal dimen-
sion, lw, is normally long enough to justify the approximation of γ = (lw – cc)/
lw ≈ 1. Furthermore, if the total vertical reinforcement, Af, is uniformly dis-
tributed throughout lw, the parameters in Equation (5.58) can be evaluated 
as ρf1 = 0 and ρf2 = Af/(2blw) = ρf/2, where b is the thickness of the wall. 
Substituting these values into Equation (5.58), k can be calculated as

	
n

n1
k

f f

f f

=
ρ

+ ρ
	 (5.64)

The contribution of horizontal (shear reinforcement) can be evaluated, 
assuming that

	 d = 0.8lw	 (5.65)

COMMENTARY

Mohamed et al. [33] tested GFRP RC shear walls to attain strength and drift 
data. Four large-scale shear walls were constructed and failed under quasi-
static reversed cyclic lateral loading. The GFRP RC walls had different aspect 
ratios covering the range of medium-rise walls. Experimental results show 
that properly designed and detailed GFRP RC walls can attain their flex-
ural capacities with no strength degradation and that shear, sliding shear, and 
anchorage failures can be effectively controlled. Figure 5.12 shows a GFRP RC 
shear wall tested and failed under lateral cyclic loads.



Members subjected to combined axial load and bending moment  185

(a) Test setup of the wall specimens 

(b) Concrete crushing causing failure 

Figure 5.12 � GFRP RC shear walls reinforced with GFRP bars under lateral cyclic loading. 
(University of Sherbrooke, Sherbrooke, Quebec, Canada; courtesy of Prof. 
Brahim Benmokrane.)
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5.9.8 � Examples—Shear wall strength 
and shear friction

Example 5.5

Calculate the design shear strength of the shear wall detailed as follows:

Concrete: f   c = 4.0 ksi
Ec (ksi) = 57√f   c (psi) = 3600 ksi

Vertical reinforcement: ffu = ffd = 60 ksi
Ef = 6000 ksi
Af1 = #5@12 in. = 0.3 in.2/ft   
Layer 1

Af2 = #5@8 in. = 0.45 in.2/ft  Layer 2
Horizontal reinforcement: ffu = 60 ksi

Efv = 6000 ksi
Afv = #3@12 in.  Two layers

Size: b = 12.0 in.  Wall thickness
lw = 16 ft  Wall length

Solution:
Concrete contribution, Vc:

ρf = (Af1 + Af2)/b = 0.0625 in./
ft = 0.00521

nf = Ef  /Ec = (6000 ksi)/(3600 ksi) 
= 1.67

nf ρf = 0.00868
k = 0.0852  Equation (5.64)
c = klw = 16.4 in.
Vc = 62.2 kip

Shear reinforcement contribution, Vf:
Afv = 2#3@12 in. = 0.22 in.2

s = 12.0 in.
ffv = 0.004Efv ≤ ffb

ffb = ffu = 60 ksi  No bends
ffv = 24.0 ksi
d = 0.8lw = 153.6 in.
Vf = Afv ffvd/s = 67.6 kip

The nominal shear strength:
Vn = Vc + Vs = 129.8 kip

And the design shear strength:
ϕVn = 97.4 kip
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Example 5.6

Investigate the necessity of additional dowels to achieve the full 
strength of the shear wall in Example 5.5 (ϕVn = 97.4 kip), if the wall 
is placed on a foundation with a surface not intentionally roughened. 
The axial compressive load is Pu = 100 kip.

Size: b = 12.0 in.  Thickness of the wall
lw = 16 ft  Horizontal length of the wall

Vertical reinforcement:
ffu = ffd = 60 ksi
Ef = 6000 ksi
ρf = 0.00521
Avf = ρf (blw) = 12 in.2

Solution:
fvf = Ef   εvf = 18 ksi < ffu (Equation (4.113))
μ = 0.6  The surface is not intentionally roughened
Avffvfμ = 129.6 kip
Puμ = 60 kip

Vn = ( ) ( )+ =129.6 60 142.8 kip
2 2

 (Equation (4.114))

ϕVn = (0.75)(142.8) = 107.1 kip > 97.4 kip

No additional dowel is required.
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Chapter 6

Design of a one-way slab

6.1  INTRODUCTION

The floor plan of a two-story medical facility building is shown in 
Figure 6.1. The column spacing was dictated by the size of the equipment 
that occupies the ground floor. The second floor system is a one-way RC 
slab spanning along the east–west plan direction. The building is located in 
a region of low seismicity. Loading of each floor consists of the self-weight, 
a superimposed dead load of 2.5 psf, and a live load of 100 psf.

This example describes the procedure to design a 1-foot slab strip of 
the second floor. The design is presented as a sequence of ten steps as 
summarized here:

Step 1	 Define slab geometry and concrete properties
Step 2	 Compute factored loads
Step 3	 Compute ultimate and bending moments and shear forces
Step 4	 Design FRP primary reinforcement for bending moment capacity
Step 5	 Check creep rupture stress
Step 6	 Check crack width
Step 7	 Check maximum midspan deflection
Step 8	 Check shear capacity
Step 9	� Design FRP secondary reinforcement for temperature and 

shrinkage
Step 10	� Fire safety check

The results of the slab strip design are summarized next to facilitate 
understanding of the nine sequential steps devoted to calculations.

6.2  DESIGN SUMMARY

Based on a slab thickness of 8 in., the following loads are considered.

Slab self-weight	 96.7 psf
Superimposed dead load	 2.5 psf
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Live load	 100 psf
Total factored load	 279 psf (0.279 kip/ft)
Service load	 199 psf (0.199 kip/ft)

Bending moments and shear forces for the 1-foot slab strip are computed 
at the support and midspan sections of the interior and exterior bays, as 
summarized in Table 6.1.

Table 6.1  Bending moments and shear forces

Section 

Bending moment Shear force

Moment 
coefficient

Ultimate 
moment 
(kip-ft)

Service 
moment 
(kip-ft)

Shear 
coefficient

Ultimate 
shear (kip)

Ext. bay Exterior 
support

1/24 2.91 2.08 1.0 2.21

Midspan 1/14 5.00 3.57 0.15 0.331
Interior 
support

1/10 6.99 4.99 1.15 2.54

Int. bay First 
support 

1/11 6.36 4.54 1.15 3.02

Midspan 1/16 4.37 3.12 1.15 0.394
Second 
support

1/11 6.36 4.54 1.15 3.02

A

B

C

1 2 4

30 ft

30 ft

17 ft 17 ft20 ft

3

1 ft

Figure 6.1 � Second-floor plan.
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The design for bending moment is limited to the exterior bay because it 
represents the worst condition. The following sections are considered:

Section 1	 Exterior support
Section 2	 Midspan
Section 3	 Interior support

The design of FRP reinforcement for a slab thickness of 8 in. is summa-
rized in Table 6.2. Bar sizes and layout are selected in order to optimize bar 
production time and construction effort.

The design step results are summarized in Table 6.3.
Bar layout and typical details are shown in Figures 6.2(a) and 6.2(b).
Table 6.4 is provided to convert US customary units to the SI system.

6.3 � STEP 1—DEFINE SLAB GEOMETRY 
AND CONCRETE PROPERTIES

6.3.1  Geometry

The one-way slab has three spans of length l1, l2, and l3, respectively:

l1 := 17 ft

Table 6.2  Slab geometry and reinforcement

Section Slab thickness Primary reinforcement Secondary reinforcement

1
8 in. No. 4 @ 6 in. (top and 

bottom)
No. 4 @ 12 in. (top and 
bottom)2

3

Table 6.3  Slab design summary

Limit state Section Demand/computed Capacity/limit

Ultimate Flexural strength 1 2.91 kip-ft 4.06 kip-ft
2 5.00 kip-ft 11 kip-ft
3 6.99 kip-ft 11 kip-ft

Shear strengtha 4 3.02 kip 4.8 kip
Serviceability Creep rupture 1 5.6 ksi 16 ksi

2 9.7 ksi
3 13.5 ksi

Crack width 1 0.011 in. 0.028 in.
2 0.019 in.
3 0.026 in.

Maximum midspan deflection 0.27 in. 0.425 in.
a	 When the shear capacity of the concrete slab is checked, the maximum shear force at the supports 

of the interior bay (identified as Section 4) is used.
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l2 := 20 ft
l3 := 17 ft

A clear top and bottom concrete cover, cc, is of 0.75 in.:

cc := 0.75 in.

Slab width used for computation is

b := 1 ft

Define slab thickness: Table 8-2 of ACI 440.1R-06 guides the selection 
by recommending minimum values for the slab thickness. For an end bay, 
the recommended thickness is

	
⋅







 ⋅t :=round

l
17 in

in = 12 inend
1 .

For the interior bays, the recommended thickness is

	
⋅







 ⋅t := round

l
22 in

in = 11 inint
2 .

Table 6.4  Conversion table

US customary SI units

Lengths, areas, section properties
1 in. 25.4 mm

0.025 m
1 ft 304.8 mm

0.305 m
1 in.2 645 mm2

1 ft2 0.093 m2

1 in.3 16,387 mm3

1 in.4 416,231 mm4

Forces, pressures, strengths
1 lbf 4.448 N
1 kip 4.448 kN
1 lbf-ft 1.356 N·m
1 kip-ft 1.356 kN.m
1 psi 6.895 kPa
1 psf 47.88 N/m2

1 ksi 6.895 MPa
1 ksf 47.88 kN/m2

1 lbf/ft3 157.1 N/m3
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The recommended slab thickness can be selected as tslabACI := max(tend,tint) 
= 12∙in. It has to be noted that these values are only a starting point for the 
design. In this example, a different thickness is selected:

	 tslab := 8 in.

6.3.2  Concrete properties

The following concrete properties are considered for the design:

f ′c := 5000 psi	 Compressive strength
εcu := 0.003	 Ultimate compressive strain

ρ := 145
lbf
ft

c 3 	 Density

E := 33psi
lbf ft

fc
0.5 c

3

1.5

c
ρ
⋅





 ⋅ ′− 	Compressive modulus of elasticity

Ec = 4074∙ksi	 Computed as indicated in ACI 318-11
f := 7.5 f psir c⋅ ′ ⋅ 	 Concrete tensile strength
fr = 530∙psi	 Computed as indicated in ACI 318-11

The stress-block factor, β1, is computed as indicated in ACI 318-11:

	 :=

0.85 if f = 4000psi = 0.8

1.05 0.05
f

1000psi
if 4000psi < f 8000psi

0.65 otherwise

1

c

c
cβ

′

− ⋅ ′ ′ <

6.3.3 � Analytical approximations of 
concrete compressive stress–strain 
curve—Todeschini’s model

0 0.001 0.002 0.003
0

2000

4000

Concrete Compressive Stress-strain Curve

Strain, in./in.

St
re

ss
, p

si
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Compressive strain at peak is

	 :=
1.71 f

E
= 0.0021c0

c

c
ε ⋅ ′

Compressive stress at peak is

	 " := 0.9
f
psi

c
cσ ⋅ ′

Stress–strain curve equation is

	 :=
2 "

1
c c

c
c

c0

c

c0

2( )σ ε
⋅ σ ⋅ ε

ε






+ ε
ε







6.4  STEP 2—COMPUTE THE FACTORED LOADS

The self-weight is computed considering a concrete density of 150 psf. 
Other dead loads such as floor cover (0.5 psf) and ceiling (2 psf) are con-
sidered. A live load of 100 psf was requested by the owner. The following 
unfactored uniform loads are considered:

SW := tslab∙ρc = 96.7∙psf	 Slab self-weight
OD := 2.5 psf	 Other dead loads
DL := SW + OD = 99.2∙psf	 Total dead load
LL := 100 psf	 Live load

The governing load combination for computing the total factored load, 
TFL, is load combination (9-2) defined in ACI 318-11:

	 TFL := 1.2∙DL + 1.6∙LL = 279∙psf

The total service load, SL, is

	 SL := DL + LL = 199.2∙psf

The dead load per unit width (including the slab’s self-weight) is

	 ⋅ ⋅w := DL b = 99.2
lbf
ft

D

The live load per unit width is

	 ⋅ ⋅w := LL b = 100
lbf
ft

L
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The total factored load per unit width is

	 ⋅ ⋅w := 1.2w + 1.6 w = 279
lbf
ft

TFL D L

The total service load per unit width is

	 ⋅w := w + w = 199
lbf
ft

S D L

6.5 � STEP 3—COMPUTE BENDING 
MOMENTS AND SHEAR FORCES

Bending moments and shear forces are determined as indicated in 
ACI 318-11. The moment coefficients can be used as the slab satisfies 
the specified geometry requirements. In fact, there are three spans; the ratio 
of the longer clear span to the shorter clear span is less than 1.2, the loads 
are uniformly distributed, the unfactored live load does not exceed three 
times the unfactored dead load, and, the members are prismatic.

Clear span values, ln, are computed considering a constant beam width 
of 14 in.:

	 bbeam := 14 in.

	 ln1 := l1 – bbeam = 15.8∙ft

	 ln2 := l2 – bbeam = 18.8∙ft

Bending moments (exterior bay)

Exterior support

C :=
1

24
mNeg1 	 Moment coefficient

M := C w l = 2.9 ft kipuNeg1 mNeg1 TFL n1
2⋅ ⋅ ⋅ ⋅ 	 Ultimate bending moment

M := C w l = 2.1 ft kipS1 mNeg1 S n1
2⋅ ⋅ ⋅ ⋅ 	 Service bending moment

Midspan

C :=
1

14
mPos2 	 Moment coefficient

M := C w l = 5 ft kipuPos2 mPos2 TFL n1
2⋅ ⋅ ⋅ ⋅ 	 Ultimate bending moment

M := C w l = 3.6 ft kipS2 mPos2 S n1
2⋅ ⋅ ⋅ ⋅ 	 Service bending moment
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Interior support

C :=
1

10
mNeg3 	 Moment coefficient

M := C w l = 7 ft kipmNeg3 mNeg3 TFL n1
2⋅ ⋅ ⋅ ⋅ 	 Ultimate bending moment

M := C w l = 5 ft kipS3 mNeg3 S n1
2⋅ ⋅ ⋅ ⋅ 	 Service bending moment

Bending moments (interior bay)

First support

C :=
1
11

mNeg4 	 Moment coefficient

M := C w l = 6.4 ft kipuNeg4 mNeg4 TFL n1
2⋅ ⋅ ⋅ ⋅ 	 Ultimate bending moment

M := C w l = 4.5 ft kipS4 mNeg4 S n1
2⋅ ⋅ ⋅ ⋅ 	 Service bending moment

Midspan

C :=
1

16
mPos5 	 Moment coefficient

M := C w l = 4.4 ft kipuPos5 mPos5 TFL n1
2⋅ ⋅ ⋅ ⋅ 	 Ultimate bending moment

M := C w l = 3.1 ft kipS5 mPos5 S n1
2⋅ ⋅ ⋅ ⋅ 	 Service bending moment

Second support

C :=
1
11

mNeg6 	 Moment coefficient

M := C w l = 6.4 ft kipuNeg6 mNeg6 TFL n1
2⋅ ⋅ ⋅ ⋅ 	 Ultimate bending moment

M := C w l = 4.5 ft kipS6 mNeg6 S n1
2⋅ ⋅ ⋅ ⋅ 	 Service bending moment

Shear forces (exterior bay)

Exterior support

Cv1 := 1	 Shear coefficient

⋅ ⋅ = ⋅V := C w
l
2

2.2 kipu1 v1 TFL
n1 	 Ultimate shear force

Midspan

Cv2 := 0.15	 Shear coefficient

⋅ ⋅ = ⋅V := C w
l
2

0.33 kipu2 v2 TFL
n1 	 Ultimate shear force
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Interior support

Cv3 := 1.15	 Shear coefficient

⋅ ⋅ = ⋅V := C w
l
2

2.5 kipu3 v3 TFL
n1 	 Ultimate shear force

Shear forces (interior bay)

First support

Cv4 := 1.15	 Shear coefficient

⋅ ⋅ = ⋅V := C w
l
2

3 kipu4 v4 TFL
n2 	 Ultimate shear force

Midspan

Cv5 := 0.15	 Shear coefficient

⋅ ⋅ = ⋅V := C w
l
2

0.39 kipu5 v5 TFL
n2 	 Ultimate shear force

Second support

Cv6 := 1.15	 Shear coefficient

⋅ ⋅ = ⋅V := C w
l
2

3 kipu6 v6 TFL
n2 	 Ultimate shear force

6.6  STEP 4—DESIGN FRP PRIMARY REINFORCEMENT

Type_of_Fiber :=
Glass
Carbon

Bar_Size :=
#2
#3
#4
#5
#6
#7
#8
#9
#10

Select the FRP reinforcement: For the purpose of this design example, 
it  is assumed that GFRP bars of the same size are used everywhere in 
the slab.
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The ACI 440.6.1R-06 minimum manufacturer’s guaranteed mechanical 
properties of the selected bars are the following:

ffuu = 100 ∙ ksi	 Ultimate guaranteed tensile strength of the FRP
εfuu = 0.018	 Ultimate guaranteed rupture strain of the FRP
Ef = 5700 ∙ ksi	 Guaranteed tensile modulus of elasticity of the FRP

n :=
E
E

= 1.399f
f

c

	� Ratio of modulus of elasticity of bars to modulus of 
elasticity of concrete

The geometrical properties of the selected bars are the following:

ϕf_bar = 0.5 ∙ in.	 Bar diameter
Af_bar = 0.196 ∙ in.2	 Bar area

FRP reduction factors: Table  7-1 of ACI 440.1R-06 is used to define 
the environmental reduction factor, CE. The type of exposure has to be 
selected:

Type_of_Exposure :=
Interior
Exterior

CE = 0.8	 Environmental reduction factor for GFRP

Table 8-3 of ACI 440.1R-06 is used to define the reduction factor to take 
into account the FRP creep rupture stress. Creep stress in the FRP is evalu-
ated considering the total unfactored dead loads and the sustained portion 
of the live load (20% of the total live load):

kcreep_R = 0.2	 Creep-rupture stress limitation factor

Crack width is checked using Equation (8-9) of ACI 440.1R-06. A crack 
width limit, wlim, of 0.028 in. is used for interior exposure, while 0.020 in. 
is used for exterior exposure:

wlim = 0.028∙in	 Crack width limit

FRP ultimate design properties: The ultimate design properties are cal-
culated per Section 7.2 of ACI 440.1R-06:

ffu := CE∙ffuu = 80∙ksi	 Design tensile strength
εfu := CE∙εfuu = 0.014	 Design rupture strain
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FRP creep-rupture limit stress: The FRP creep-rupture limit stress is cal-
culated per Section 8.4 of ACI 440.1R-06:

	 ff_creep := kcreep_R∙ffu = 16∙ksi

6.6.1  Case 1—Exterior support

Reinforcement required to resist bending moments: As discussed in Chapter 
4, the following design condition shall be satisfied: ϕMn > Mu. When the 
failure is due to FRP rupture: ϕMn = ϕ Af ffu (df – β1/2cu). Considering the 
lower bound condition (ϕMn = Mu) and solving for Af, the following can 
be written:

	
φ − β ⇒

⇒ ρ φ − β

A = M / ( A f (d /2c ))

= A /bd = M / ( A f (d /2c )bd )

f_req_bend u f fu f 1 u

f_req_bend f_req_bend f u f fu f 1 u f

Assuming a ϕ-factor of 0.65 and a neutral axis depth equal to 15% of the 
effective reinforcement depth, the longitudinal reinforcement ratio required 
for bending, ρf_req_bend, can be estimated:

ϕ-factor	 ϕb_trial := 0.65

The effective reinforcement depth is

	 − − φ
d := t c

2
f1 slab c

f_bar = 7.0 · in.

The longitudinal reinforcement ratio required for bending is

	 ( )

( )

ρ
φ ⋅ ⋅ −β ⋅

⋅
⋅

= ⋅ ⋅

:=
M

f d /2 0.15d
1

b d

0.00122 M = 2.9 kip ft

f_req_bend1
u1

b_trial fu f1 1 f1 f1

u1

The minimum reinforcement requirement has to be verified. Equation 
(8-8) of ACI 440.1R-06 is used. If the failure is not governed by FRP rup-
ture, this requirement is automatically achieved:

	 ( )⋅ ′ ⋅ ⋅ ⋅












= ⋅A := min
4.9 f psi

f
b d ,

300psi
f

b d 0.315 inf_min1
c

fu
f1

fu
f1

2

	 ρ
⋅

:=
A
b d

= 0.00375f_min1
f_min1

f1
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The design reinforcement ratio required for bending is taken as

	 ρf_bend1 := max(ρf_req_bend1, ρf_min1) = 0.00375

Reinforcement required for concrete shear strength: As discussed in 
Chapter 4, for FRP reinforced members the concrete contribution to shear 
strength is also dependent upon the longitudinal reinforcement ratio per 
Equation (9-1) of ACI 440.1R-06:

	 )(′ = ⋅ρ ⋅ ρ ⋅ − ρ ⋅V = 5 f b k d with k 2 n + n nc c f f f f f f f
2

f f

As discussed in Chapter 4, the lower bound value of Vc is ′ ⋅0.8 f b d .c f  
Therefore, the detailed expression of Vc should only be computed if 

φ ⋅ ′ ⋅V > 0.8 f b d .u c f

The lower-bound concrete shear strength is

	 ′ ⋅ ⋅ ⋅V := 0.8 f psib d = 4.8 kipc1_lower c f1

The ultimate shear force is

	 Vu1 = 2.209∙kip

	 Check_ShearLongRenf1 :=
“Compute detailed Vc” if V > V

“Minimum concrete shear strength”otherwise
u1 c1_lower

	 Check_ShearLongRenf1 := “Minimum concrete shear strength”

FRP longitudinal reinforcement design: The design reinforcement 
ratio can be selected equal to ρf_bend because the design for shear is not 
required:

	 ρf_des1 := ρf_bend1 = 0.00375

This reinforcement ratio corresponds to an area of

	 Af_des1 := ρf_des1∙b∙df1 = 0.315∙in.2

The required number of no. 4 bars is

	 =N :=
A
A

1.604f_des1
f_des1

f_bar
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The corresponding required spacing is

	 − ⋅ φ ⋅S :=
b N

N
= 6.98 inf_des1

f_des1 f_bar

f_des1

.

The following bar spacing is selected:

	 Sf_bar1 := 6 in.

The minimum required clear bar spacing is

	 Sf_min1 := max (1∙in., ϕf_bar) = 1∙in.

The bar clear spacing is

	 Sf_bar1 – ϕf_bar = 5.5∙in.

	
− φ ≥

Check_BarSpacing1 :=
“OK” if s s

“Too many bars” otherwise
f_bar1 f_bar f_min1

	 Check_BarSpacing1 = “OK”

The area of FRP reinforcement is

	 ⋅ ⋅A :=
b

s
A = 0.39 inf1

f_bar1
f_bar

2

The FRP reinforcement ratio (Equation 8-2 of ACT 440.1R-06) is

	 ρ
⋅

=:=
A

b d
0.00467f1

f1

f1

Design flexural strength: The failure mode depends on the amount of 
FRP reinforcement. If ρf is larger than the balanced reinforcement ratio, ρfb, 
then concrete crushing is the failure mode. If ρf is smaller than the balanced 
reinforcement ratio, ρfb, then FRP rupture is the failure mode (Equation 8-3 
of ACI 440.1R-06):

	 ρ β ⋅ ′ ⋅ ⋅ ε
⋅ ε

=:= 0.85
f
f

E
E + f

0.00748fb1 1
c

fu

f cu

f cu fu

Based on cross-section compatibility, the effective concrete compressive 
strain distribution at failure can be computed as a function of the neutral 
axis depth, x:

	 ε

ε ρ ≥ ρ

ε
−

⋅ ρ ρ
(x,y) :=

x
y if

d x
y if <

c1

cu
f1 fb1

fu

f1
f1 fb1
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Similarly, the effective tensile strain in the FRP reinforcement can be 
computed as a function of the neutral axis depth, x:

	 )(ε
ε ρ ρ

ε ⋅ − ε






ρ ≥ ρ(x) :=
if <

min
x

d x ,
iff1

fu f1 fb1

cu
f1 fu

f1 fb1

The compressive force in the concrete as a function of the neutral axis 
depth, x, is

	 ∫⋅
⋅ σ ⋅ ε

ε








+ ε
ε









C (x) := b
2 "

(x,y)

1
(x,y)

psi dyc1

c
c1

c0

c1

c0

2
0in

x

The tensile force in the FRP reinforcement as a function of the neutral 
axis depth, x, is

	 Tf1(x) := Af1∙Ef∙εf1(x)

The neutral axis depth, cu, can be computed by solving the equation of 
equilibrium Cc – Tf = 0:

First guess:

	 x01 := 0.1df1

Given:

	 f1(x) := Cc1(x) – Tf1(x)

	 cu1 := root (f1(x01),x01)

The neutral axis depth is

	 cu1 = 0.86∙in.

The nominal bending moment capacity can be computed as follows:

∫ ( )
( )

( )⋅ ⋅
⋅ σ ⋅ ε

ε






+
ε

ε


















⋅ − = ⋅ ⋅M := b y
2 "

(c ,y)

1
c ,y

psidy + T c d c 17 ft kipn1

c
c1 u1

c0

c1 u1

c0

2 f1 u1 f1 u1
0

cu1
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The strain distribution over the cross section is shown next.

εcu = 0.003 εf1(cu1) = 0.01404

εc1(cu1, cu1) = 0.002

df1 = 7·in

εfu = 0.01404

Af

The concrete crushing failure mode is less brittle than the one due to FRP 
rupture. The ϕ-factor is calculated according to Jawahery and Nanni [1].

	

( )

( )

( )

φ

−
ε

ε
≤

−
ε

ε
≥

−
ε

ε

:=

0.65 if 1.15
c

2
0.65

0.75 if 1.15
c

2
0.75

1.15
c

2
otherwise

b1

f1 u1

fu

f1 u1

fu

f1 u1

fu

	 ϕb1 = 0.65

The design flexural strength equation is computed per Equation (8-1) of 
ACI 440.1R-06:

	
φ ⋅ ≥ φ ⋅ ⋅ ⋅

⋅ ⋅
Check_Flexure1 :=

“OK” if M M ( M = 11 kip ft)

“Not good”otherwise (M = 2.9 kip ft)

b1 n1 u1 b1 n1

u1

	 Check_Flexure1 = “OK”

Flexural strength computed per ACI 440.1R-06: The tensile stress in the 
GFRP is computed, per Equation (8-4c) of ACI 440.1R-06, when ρf > ρfb, 
or is ffu if ρf < ρfb.
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( )⋅ ε β ⋅ ′
ρ

⋅ ε − ⋅ ε

ρ ≥ ρ ⋅ ⋅
f :=

E
4

+
0.85 f

E 0.5E

if = 80 ksi (f = 80 ksi)

f otherwise

f1

f cu
2

1 c

f1
f cu f cu

f1 fb1 fu

fu

ff cannot exceed ffu; therefore, the following has to be checked:

CheckMaxStress1 :=
“OK” if f f

“Reduce bar spacing or increase bar size” otherwise
f1 fu≤

	 CheckMaxStress1 = “OK”

The stress-block depth is computed per Equation (8-4b) or Equation 
(8-6c) depending on whether ρf > ρfb, or ρf < ρfb, respectively:

	

⋅
⋅ ⋅

ρ ≥ ρ

β ⋅ ε
ε + ε

















a :=

A f
0.85 f' b

if Equation (8-4b) of ACI 440.1R-06

d otherwise Equation (8-6c) of ACI 440.1R-06
f1

f1 f1

c
f1 fb1

1
cu

cu fu
f1

	 af1 = 0.99∙in.

	
β

= ⋅c :=
a

1.233 inf1
f1

1

.	 (neutral axis depth)

The nominal moment capacity is

	 ⋅ ⋅ −






 ⋅ ⋅M := A f d

a
2

= 17 ft kipnACI_1 f1 f1 f1
fl

The concrete crushing failure mode is less brittle than the one due to 
FRP rupture. The ϕ-factor is computed according to Equation (8-7) of ACI 
440.1R-06:

	 :=

0.55 if = 0.55

0.30 0.25 if < < 1.4

0.65 otherwise

bACI_1

f1 fb1 bACI_1

f1

fb1
fb1 f1 fb1φ

ρ ≤ ρ φ

+ ⋅ ρ
ρ

ρ ρ ⋅ρ
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The design flexural strength equation is computed per Equation (8-1) of 
ACI 440.1R-06:

	 ϕbACI_1 MnACI_1 = 9∙kip∙ft

φ ⋅ ≥ ⋅ ⋅
Check_FlexureACI_1 :=

“OK” if M M (M = 2.9 kip ft)

“Not good” otherwise
bACI_1 nACI_1 u1 u1

	 Check_FlexureACI_1 = “OK”

Embedment length: Because this is a case of negative reinforcement, it 
has to be checked if adequate moment capacity can be achieved at the end 
of the embedment length. The available length for embedment is

	 lemb1 := 12 in.

The developable tensile stress is calculated per Equation (11-3) of ACI 
440.1R-06. Minimum between cover to bar center and half of the center-
to-center bar spacing is

	 = + φ





 = ⋅C : c

2
,
s

2
1 inb1 c

f _bar f _bar1 .	

Bar location modification factor for top reinforcement but less than 12 in. 
of concrete below it is

	 αNeg1 := 1.0	

Required stress in the FRP is

	 ff1 :=Ef ∙ εf1(cu1) = 80 ∙ ksi

The developable tensile stress (ACI 440.1R-06 Equation 11-3) is

	

f :

f if
f psi

13.6
l C l

340 f

f psi
13.6

l C l
340 otherwise

33.7 ksi

fd11

fu
c

Neg1

emb1

f _bar

b1

f _bar

emb1

f _bar
fu

c

Neg1

emb1

f _bar

b1

f _bar

emb1

f _bar

=

′ ⋅
α

⋅ ⋅
φ

+
φ

⋅
φ

+






≥

′ ⋅
α

⋅ ⋅
φ

+
φ

⋅
φ

+


















= ⋅
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	 =
≥

CheckFailure1:
“Bar ultimate strength”if f f

“Bond strength”otherwise

fd11 fr1

	 CheckFailure1 = “Bond strength”

The cross section of interest is a bond critical section. The nomi-
nal moment capacity, therefore, has to be computed per ACI 440.1R-06 
Equation (8-5) or Equation (8-6b) when the failure mode is concrete crush-
ing or bond, respectively.

=
⋅ ⋅ − ⋅ ⋅

⋅ ′ ⋅














 =

=

M :
A f

1
2

A f
0.85 f b

if CheckFailure1 “Bond strength”

M if CheckFailure1 “Bar ultimate strength”

n1b1

f1 fd11 f1
f1 fd11

c

n1

d

	 Mn1b1 = 7.4 ∙ ft ∙ kip

The ultimate moment is

	 Mu1 = 2.9 ∙ ft ∙ kip

The strength-reduction factor when failure is controlled by bond is

	 φ =
= =

φ =
:

0.55ifCheckFailure1 “Bondstrength” 0.55

ifCheckFailure1 “Bondultimatestrength”
b1_bond

b1

The design flexural strength is therefore:

	 ϕb1_bond ∙ Mn1b1 = 4.06 ∙ kip ∙ ft

	 Check_ FlexureNeg1b :
“OK”if M M M 2.9 kip ft

“Notgood”otherwise

b1_bond n1b1 u1 u1( )
=

φ ⋅ ≥ = ⋅ ⋅

	 Check_FlexureNeg1b = “OK”

The embedment length is adequate. If the embedment length was 
not  adequate, a bent bar could have been used as indicated in the 
following.
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lemb1 = 12. in
Bar = “#4”

Bent_Bar = “Not needed in this example”

rb

ltail

lbhf

bbeam = 14. in

6.6.2  Case 2—Midspan

Reinforcement required to resist bending moments: The same procedure 
discussed for Case 1 is followed.

The effective reinforcement depth is

	 = − − φ = ⋅

φ φ =

d : t c
2

7 in

-factor 0.65

f2 slab c
f _bar

b_ trial

.

The longitudinal reinforcement ratio required for bending is

	
:

M

f d
2

0.15d

1
b d

0.00209 (M 5 kip ft)

f _ req_bend2
u2

b_ trial fu f2
1

f2
f2

u2

ρ =
φ ⋅ ⋅ − β ⋅





⋅
⋅

= = ⋅ ⋅

The minimum reinforcement requirement has to be verified. Equation 
(8-8) of ACI 440.1R-06 is used. If the failure is not governed by FRP rup-
ture, this requirement is automatically achieved:

	 A : min
4.9 f psi

f
b d ,

300psi
f

b d 0.315 inf _ min2
c

fu
f2

fu
f2

2( )=
⋅ ′ ⋅

⋅ ⋅












= ⋅
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	 :
A
b d

0.00375f _ min2
f _ min2

f2

ρ =
⋅

=

The design reinforcement ratio required for bending is taken as

	 ρf_des2 := max (ρf_req_bend2, ρf_min2) = 0.00375

This reinforcement ratio corresponds to an area of

	 Af_des2 := ρf_des2 ⋅ b ⋅ df2 = 0.315 · in2

The required number of no. 4 bars is

	 = =N :
A
A

1.604f _des2
f _des2

f _bar

The corresponding required spacing is

	 s :
b N

N
6.98 inf _des2

f _des2 f _bar

f _des2

=
− ⋅φ

= ⋅

The following bar spacing is selected:

	 sf_bar2 := 6 in.

The minimum required clear bar spacing is

	 sf_min2 := max(1·in., ϕf_bar) = 1·in.

The bar clear spacing is

	 sf_bar2 – ϕf_bar = 5.5·in.

	 =
− φ ≥

Check_BarSpacing2 :
“OK”if s s

“Toomanybars”otherwise

f _bar2 f _bar f _ min2

	 Check_BarSpacing2 = “OK”

The area of FRP reinforcement is

	 = ⋅ = ⋅A :
b

s
A 0.39 inf2

f _bar2
f _bar

2
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The FRP reinforcement ratio (Equation 8-2 of ACI 440.1R-06) is

	 :
A

b d
0.00467f2

f2

f2

ρ =
⋅

=

Design flexural strength (Equation 8-3 of ACI 440.1R-06):

	 ρ = β ⋅ ′ ⋅ ⋅ ε
⋅ ε +

=: 0.85
f
f

E
E f

0.00748fb2 1
c

fu

f cu

f cu fu

The effective concrete compressive strain at failure as a function of the 
neutral axis depth, x, is

	 ( )ε =

ε ⋅ ρ ≥ ρ

ε
−

⋅ ρ < ρ
x,y :

x
y if

d x
y if

c2

cu
f2 fb2

fu

f2
f2 fb2

The effective tensile strain in the first layer of FRP reinforcement as a 
function of the neutral axis depth, x, is

	
( )

( )ε =

ε ρ < ρ

ε ⋅ − ε





ρ ≥ ρ
x :

if

min
x

d x , if
f2

fu f2 fb2

cu
f2 fu f2 fb2

The compressive force in the concrete as a function of the neutral axis 
depth, x, is

	 ∫
( )

( )
( ) = ⋅

⋅ σ ⋅
ε

ε







+
ε

ε







C x : b

2 "
x,y

1
x,y

psidyc2

c
c2

c0

c2

c0

2
0in

x

The tensile force in the first layer of FRP reinforcement as a function of 
the neutral axis depth, x, is

	 Tf2(x) := Af2 ∙ Ef ∙ εf2(x)

The neutral axis depth, cu, can be computed by solving the equation of 
equilibrium Cc – Tf = 0:

	 Given: f2(x) := Cc2(x) – Tf2(x)
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	 First guess: x02 := 0.1df2

	 cu2 := root (f2(x02), x02)

The neutral axis depth is

	 cu2 = 0.86·in.

The nominal bending moment capacity can be computed as follows:

∫ ( )
( )

( )
( )= ⋅ ⋅

⋅ σ ⋅
ε

ε






+
ε

ε


















+ ⋅ − = ⋅ ⋅M : b y

2 "
c ,y

1
c ,y

psidy T c d c 17 ft kipn2

c
c2 u2

c0

c2 u2

c0

2 f2 u2 f2 u2
0

cu2

The strain distribution over the cross section is shown next.

εcu = 0.003εf2(cu2) = 0.014

df2 = 7·in

εfu = 0.014 εc2(cu2, cu2) = 0.00197

Af

The ϕ-factor is calculated according to Jawahery and Nanni [1]:

	

( )

( )

( )

φ =

−
ε

ε
≤

−
ε

ε
≥

−
ε

ε

φ =

:

0.65if1.15
c

2
0.65

0.75if1.15
c

2
0.65

1.15
c

2
otherwise

0.65

b2

f2 u2

fu

f2 u2

fu

f2 u2

fu

b2
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The design flexural strength equation is computed per Equation (8-1) of 
ACI 440.1R-06:

	 ϕb2·Mn2 = 11·kip·ft

	

Check_Flexure2 :
“OK”if M M M 5 kip ft

“Not good” otherwise

b2 n2 u2 u2( )
=

φ ⋅ ≥ = ⋅ ⋅

	 Check_ Flexure2 = “OK”

Flexural strength computed per ACI 440.1R-06: The tensile stress in 
the GFRP is computed per Equation (8-4c) when ρf > ρfb, or is ffu if ρf < ρfb.

	

( )
=

⋅ ε
+ β ⋅

ρ
⋅ ε − ⋅ ε ρ ≥ ρ = ⋅

f :
E

4
0.85 f'

E 0.5E if 80 ksi

f otherwise

f2

f cu
2

1 c

f2
f cu f cu f2 fb2

fu

ff cannot exceed ffu; therefore, the following has to be checked:

	

( )
=

≤ = ⋅
CheckMaxStress2 :

“OK”if f f f 80 ksi

“Reduce bar spacing or increase bar size”otherwise

f2 fu fu

	 CheckMaxStress1 = “OK”

The stress-block depth is computed per Equation (8-4b) or Equation 
(8-6c) depending on whether ρf > ρfb or ρf < ρfb, respectively:

	

( )

( )
=

⋅
⋅ ⋅

ρ ≥ ρ

β ⋅ ε
ε + ε

















a :

A f
0.85 f' b

if Equation 8-4b of ACI440.1R-06

d otherwise Equation 8-6c of ACI440.1R-06

f2

f2 f2

c
f2 fb2

1
cu

cu fu
f2

	 af2 = 0.986⋅in.

Neutral axis depth is
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	 =
β

= ⋅c :
a

1.233 inf2
f1

1
.

The nominal moment capacity is

	
= ⋅ ⋅







 ⋅ ⋅M : A f d

a
2

=17 ft kipnACI_2 f2 f2 f2
f2

The concrete crushing failure mode is less brittle than the one due to 
FRP rupture. The ϕ-factor is computed according to Equation (8-7) of 
ACI 440.1R-06:

	

φ =

ρ ≤ ρ φ =

+ ⋅ ρ
ρ

ρ < ρ < ⋅ρ:

0.55if 0.55

0.30 0.25 if 1.4

0.65otherwise

bACI_2

f2 fb2 bACI_2

f2

fb2
fb2 f2 fb2

The design flexural strength equation is computed per Equation (8-1) of 
ACI 440.1R-06:

	 ϕbACI_2·MnACI_2 = 9·kip·ft

	

( )
=

φ ⋅ ≥ = ⋅ ⋅
Check_FlexureACI_2 :

“OK”if M M M 5 kip ft

“Notgood”otherwise

bACI_2 nACI_2 u2 u2

	 Check_FlexureACI_2 = “OK”

Development of positive moment reinforcement: The development 
length, ld, for straight bars can be calculated using Equation (11-3) of ACI 
440.1R-06. Minimum between cover to bar center and half of the center-
to-center bar spacing is

	 = + φ





= ⋅C : min c
2

,
s

2
1 inb2 c

f _bar f _ bar2 .

The bar location modification factor for bottom reinforcement is

	 αPos := 1
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The minimum development length is computed according to ACI 440.1R-
06 Equation (11-6):

	 =
α ⋅

⋅
−

+
φ

φ = ⋅1 :

f
f' psi

340

13.6
C 25.364 ind _ min

Pos
fu

c

b2

f _bar

f _bar .

The following development length is considered and is available to pro-
vide the required moment capacity:

	 ld := 26 in.

6.6.3  Case 3—Interior support

Reinforcement required to resist bending moments: The same procedure 
discussed for case 1 is followed.

The effective reinforcement depth is

	 = − − φ = ⋅d : t c
2

7 inf3 slab c
f _bar .

	 ϕ-factor	 ϕb_trial = 0.65

The longitudinal reinforcement ratio required for bending is

:
M

f d
2

0.15d

1
b d

0.00292 M 7 kip ftf _ req_bend3
u3

b_ trial fu f3
1

f3
f3

u3( )ρ =
φ ⋅ ⋅ − β ⋅





⋅
⋅

= ⋅ ⋅

The minimum reinforcement requirement has to be verified. Equation 
(8-8) of ACI 440.1R-06 is used. If the failure is not governed by FRP rup-
ture, this requirement is automatically achieved:

	

A : min
4.9 f psi

f
b d ,

300psi
f

b d 0.315 in

:
A
b d

0.00375

f _ min3
c

fu
f3

fu
f3

2

f _ min3
f _ min3

f1

( )=
⋅ ′ ⋅

⋅ ⋅












= ⋅

ρ =
⋅

=

The design reinforcement ratio required for bending is taken as

	 ρf_bend3 := max (ρf_red_bend3, ρf_min3) = 0.00375

Reinforcement required for concrete shear strength: The same procedure 
discussed for Case 1 is followed.
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The lower bound concrete shear strength is

	
= ′ ⋅ ⋅ = ⋅V : 0.8 f psib d 4.8 kipc3_ lower c f3

The ultimate shear force is

	 Max(Vu3, Vu4) = 3.021·kip

( ) >
Check_ShearLongRenf3 :=

“Compute detailed V ”if max V ,V V

“Minimum concrete shear strength” otherwise

Check_ShearLongRenf3 := “Minimum concrete shear strength”

c u3 u4 c3_lower

FRP longitudinal reinforcement design: The design reinforcement ratio 
can be selected as the maximum between ρf_bend and ρf_shear:

	 ρf_des3 := ρf_bend3 0.00375

This reinforcement ratio corresponds to an area of

	 Af_des3 := ρf_des3·b·df3 = 0.315·in.2

The required number of no. 4 bars is

	
= =N :

A
A

1.604f _des3
f _des3

f _bar

The corresponding required spacing is

	
= − φ = ⋅s :

b N
N

6.98 inf _des3
f _des3 f _bar

f _des3

The following bar spacing is selected:

	 sf_bar3 := 6 in.

The minimum required clear bar spacing is

	 sf_min3 := max(1·in., ϕf_bar) = 1·in.

	
=

− φ ≥
Check_ShearLongRenf3 :

“OK”if s s

“Too many bars”otherwise

f _bar3 f _bar f _ min3
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	 Check_BarSpacing3 = “OK”

The area of FRP reinforcement is

	
= ⋅ = ⋅A :

b
s

A 0.39 inf3
f _bar3

f _bar
2

The FRP reinforcement ratio (Equation 8-2 of ACI 440.1R-06) is

	
ρ =

⋅
=:

A
b d

0.00467f3
f3

f3

Design flexural strength: Equation (8-3) of ACI 440.1R-06 is

	
: 0.85

f
f

E
E f

0.00748fb3 1
c

fu

f cu

f cu fu

ρ = β ⋅ ′ ⋅ ⋅ ε
⋅ ε +

=

The effective concrete compressive strain at failure as a function of the 
neutral axis depth, x, is

	

( )ε =

ε ρ ≥ ρ

ε
−

⋅ ρ < ρ
x,y :

x
y if

d x
x if

c3

cu
f3 fb3

fu

f3
f3 fb3

The effective tensile strain in the FRP reinforcement as a function of the 
neutral axis depth, x, is

	
( )

( )ε =

ε ρ < ρ

ε ⋅ − ε





ρ ≥ ρ
x :

if

min
x

d x , if
f3

fu f3 fb3

cu
f3 fu f3 fb3

The compressive force in the concrete as a function of the neutral axis 
depth, x, is

	

∫
( )

( )
( ) = ⋅

σ ⋅
ε

ε







+
ε

ε







C x : b

2. "
x,y

1
x,y

psidyc3

c
c3

c0

c3

c0

2
0in

x
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The tensile force in the FRP reinforcement as a function of the neutral 
axis depth, x, is

	 Tf3(x) := Af3·Ef·εf3(x)

The neutral axis depth, cu, can be computed by solving the equation of 
equilibrium Cc – Tf = 0:

	 Given: f3(x) := Cc3(x) – Tf3(x)

	 First guess: x03 := 0.1df3

	 cu3 := root(f3(x03), x03))

The neutral axis depth is

	 cu3 = 0.63·in.

The nominal bending moment capacity can be computed as follows:

∫ ( )

( )

( )
( )= ⋅ ⋅

σ ⋅
ε ε

ε
















+
ε ε

ε


















+ ⋅ − = ⋅ ⋅M : b y

2. "
,y

1
,y

psidy T c d c 17 ft kipn3

c
c3 u3

c0

c3 u3

c0

2
0

c

f3 u3 f3 u3

u3

The strain distribution over the cross section is shown next.

εcu = 0.003 εf3(cu3) = 0.01404

εc3(cu3, cu3) = 0.0014 εfu = 0.01404

Af

df3 = 7·in
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The ϕ-factor is calculated according to Jawahery and Nanni [1]:

	

( )

( )

( )

φ =

−
ε

ε
≤ =

−
ε

ε
≥

−
ε

ε

:

0.65if1.15
c

2
0.65 0.65

0.75if1.15
c

2
0.75

1.15
c

2
otherwise

b3

f3 u3

fu

f3 u3

fu

f3 u3

fu

The design flexural strength equation is computed per Equation (8-1) of 
ACI 440.1R-06:

	 ϕb3·Mn3 = 11·kip·ft

	

( )
=

φ ⋅ ≥ = ⋅ ⋅
Check_Flexure3 :

“OK”if M M M 7 kip ft

“Not good”otherwise

b3 n3 u3 u3

	 Check_Flexure3 = “OK”

Flexural strength computed per ACI 440.1R-06: The tensile stress 
in the GFRP is computed per Equation (8-4c) when ρf > ρfb, or is ffu if 
ρf < ρfb.

	

f :

E

4
0.85 f

E 0.5E if 80 ksi

f otherwise

f3

f cu
2

1 c

f3
f cu f cu f3 fb3

fu

( )
=

⋅ε
+ β ⋅ ′

ρ
⋅ε − ⋅ε ρ ≥ ρ = ⋅

ff cannot exceed ffu; therefore, the following has to be checked:

	
( )

=
≤ = ⋅

CheckMaxStress3 :
“OK”if f f f 80 ksi

“Reduce bar spacing or increase bar size”otherwise

f3 fu fu

	 CheckMaxStress3 = “OK”
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The stress-block depth is computed per Equation (8-4b) or Equation 
(8-6c) depending on whether ρf > ρfb or ρf < ρfb, respectively:

( )

( )
=

⋅
⋅ ⋅

ρ ≥ ρ

β ⋅ ε
ε + ε

















a :

A f
0.85 f' b

if Equation 8-4b of ACI440.1R-06

d otherwise Equation 8-6c of ACI440.1R-06

f3

f3 f3

c
f3 fb3

1
cu

cu fu
f3

	 af3 = 0.986⋅in.

Neutral axis depth is

	 =
β

= ⋅c :
a

1.23 inf3
f3

1

.

The nominal moment capacity is

	
= ⋅ ⋅ −







 = ⋅ ⋅M : A f d

a
2

17 ft kipnACI_3 f3 f3 f3
f3

The concrete crushing failure mode is less brittle than the one due to 
GFRP rupture. The ϕ-factor is computed according to Equation (8-7) of 
ACI 440.1R-06:

	

φ =

ρ ≤ ρ

+ ⋅ ρ
ρ

ρ < ρ < ⋅ρ =:

0.55if

0.30 0.25 if 1.4 0.55

0.65otherwise

bACI_3

f3 fb3

f3

fb3
fb3 f3 fb3

The design flexural strength equation is computed per Equation (8-1) of 
ACI 440.1R-06:

	 ϕbACI_3·MnACI_3 = 9·kip·ft

( )
=

φ ⋅ ≥ = ⋅ ⋅
Check_ FlexureACI_3 :

“OK”if M M M 7 kip ft

“Not good”otherwise

bACI_3 nACI_3 u3 u3

	 Check_FlexureACI_3 = “OK”
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Tension lap splice: The recommended development length of FRP tension 
lap splices is 1.3ld (Section 11.4 of ACI 440.1R-06). The minimum recom-
mended tension lap splice development length is

	 1.3ld = 33.8⋅in.

A tension lap splice development length of 34 in. is considered and 
implemented.

Embedment length: Because this is a case of negative reinforcement, it 
has to be checked if adequate moment capacity can be achieved at the end 
of the embedment length. The maximum available length for embedment is 
equal to half the length of the adjacent span:

	 lemb3 := 0.25⋅l2 = 60⋅in.

The developable tensile stress is calculated per Equation (11-3) of ACI 
440.1R-06. Minimum between cover to bar center and half of the center-
to-center bar spacing is

	 = + φ





 = ⋅C : min c

2
,
s

2
1 inb3 c

f _bar f _bar3 .

Bar location modification factor for top reinforcement but less than 12 
in. of concrete below it is

	 αNeg3 := 1.0

Required stress in the FRP is

	 ffr3 := Ef·εf3(cu3) = 80·ksi

The developable tensile stress (ACI 440.1R-06 Equation 11-3 is

	

=

′ ⋅
α

⋅ ⋅
φ

+
φ

⋅
φ

+






≥

′ ⋅
α

⋅ ⋅
φ

+
φ

⋅
φ

+


















f :

f if
f psi

13.6
1 C 1

340 f

f psi
13.6

1 C 1
340 otherwise

fd13

fu
c

Neg3

emb3

f _bar

b3

f _bar

emb3

f _bar
fu

c

Neg3

emb3

f _bar

b3

f _bar

emb3

f _bar

	 ffd13 = 80⋅ksi

	

=
≥

=

CheckFailure3 :
“Bar ultimate strength”if f f

“Bond strength” otherwise

CheckFailure3 “Bond strength”

fd11 fr1

The cross section of interest is not a bond critical section and adequate 
moment capacity can be achieved.



226  Reinforced concrete with FRP bars: Mechanics and design﻿

6.6.4 � Ultimate bending moment 
diagram—Exterior bay

Ultimate bending moment diagram - Exterior bay
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6.6.5 � Ultimate bending moment 
diagram—Interior bay

This diagram shows that, for the interior bay, the same FRP reinforcement 
design adopted for the exterior bay can be used.
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6.7  STEP 5—CHECK CREEP-RUPTURE STRESS

6.7.1  Case 1—Exterior support

The stress level in the FRP reinforcement for checking creep rupture failure 
is evaluated considering the total unfactored dead loads and the sustained 
portion of the live load (20% of the total live load).
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Bending moment due to dead load plus 20% of live load is

	
⋅ ⋅ ⋅M :=M
w +0.20w

w
= 1.2 ft kip1_creep s1

D L

S

Ratio of modulus of elasticity of bars to modulus of elasticity of concrete is

	 nf = 1.4

Ratio of depth of neutral axis to reinforcement depth, calculated per 
Equation (8-12) in ACI 440.1R-06, is

	
k : 2 n n n 0.1081 f f1 f

2
f1 ff1 ( )= ⋅ + ρ ⋅ − ρ ⋅ =ρ

The tensile stress in the FRP is

	

f :=
M

A .d . 1
k
3

= 5.6 ksif1_creep
1_creep

f1 f1
1−





⋅

	

≤ ⋅
Check_Creep1 :=

“OK” if f f (f = 16 ksi)

“Not good” otherwise

f1_creep f_creep f_creep

	 Check_Creep1 = “OK”

The strain distribution is shown next.

εf1_creep = 0.00099

εc_creep1 = 0.00012

Af

df1 = 7·in

kcreep_R·εfu = 0.00281

Navier’s equation is applicable because the maximum concrete stress is 
smaller than 0.45f ′c:

	 E 488 psi < 0.45f 2250 psic c_creep1⋅ ε = ⋅ ′ = ⋅c 	
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6.7.2  Case 2—Midspan

Bending moment due to dead load plus 20% of live load is

	
= ⋅ = ⋅ ⋅M : M

w + 0.20w
w

2.1 ft kip2_creep s2
D L

S

Ratio of modulus of elasticity of bars to modulus of elasticity of 
concrete is

	 nf = 1.4

Ratio of depth of neutral axis to reinforcement depth, calculated per 
Equation (8-12), is

	
( )= ⋅ ρ ⋅ − ρ ⋅ =ρk : 2 n + n n 0.1082 f f2 f

2
f2 ff2

The tensile stress in the FRP is computed, conservatively, assuming one 
single layer of reinforcement, is

	

=
⋅ ⋅ −





f :
M

A d 1
k
3

= 9.7.ksif2_creep
2_creep

f2 f2
2

	

≤ ⋅
Check_Creep2 :=

“OK” if f _ f (f = 16 ksi)

“Not good” otherwise

f2 creep f_creep f_creep

	 Check_Creep2 = “OK”

df2 = 7·in

Af

kcreep_R·εfu = 0.00281

εf2_creep = 0.0017

εc_creep2 = 0.000205

Navier’s equation is applicable because the maximum concrete stress is 
smaller than 0.45f ′c:

	 E 836 psi < 0.45f 2250 psic c_ creep2⋅ ε = ⋅ ′ = ⋅c 	
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6.7.3  Case 3—Interior support

Bending moment due to dead load plus 20% of live load is

	
= ⋅ = ⋅ ⋅M : M

w +0.20w
w

3 ft kip3_creep s3
D L

S

Ratio of modulus of elasticity of bars to modulus of elasticity of concrete is

	 nf = 1.4

Ratio of depth of neutral axis to reinforcement depth, calculated per 
Equation (8-12) of ACI 440.1R-06, is

	
( )= ρ ⋅ ρ ⋅ − ρ ⋅ =k : 2 n + n n 0.1083 f3 f f3 f

2
f3 f

The tensile stress in the FRP is

	

=
⋅ ⋅ −





⋅f :
M

A d 1
k
3

= 13.5 ksif3_creep
3_creep

f3 f3
3

	

≤ ⋅
Check_Creep3 :=

“OK” if f f (f = 16 ksi)

“Not good” otherwise

f3_creep f_creep f_creep

	 Check_Creep3 = “OK”

kcreep_R·εfu = 0.00281

εf3_creep = 0.00237

εc_creep3 = 0.000287

Af

df1 = 7·in

Navier’s equation is applicable because the maximum concrete stress is 
smaller than 0.45f ′c:

	 E 1171 psi < 0.45f 2250 psic c_ creep3⋅ ε = ⋅ ′ = ⋅c 	
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6.8  STEP 6—CHECK CRACK WIDTH

The crack width is checked using Equation (8-9) of ACI 440.1R-06. A crack 
width limit, wlim, of 0.028 in. is used for interior exposure. The following 
example is limited to the exterior bay of the slab strip.

6.8.1  Case 1—Exterior support

Ratio of modulus of elasticity of bars to modulus of elasticity of concrete is

	 nf = 1.4

Ratio of depth of neutral axis to reinforcement depth, calculated per 
Equation (8-12) is

	 k1 = 0.108

Tensile stress in GFRP under service loads is

	
⋅ ⋅ −





⋅f :=
M

A d 1
k
3

= 9.4 ksifs1
s1

f1 f1
1

Ratio of distance from neutral axis to extreme tension fiber to distance 
from neutral axis to center of tensile reinforcement is

	 ( )β = − ⋅
⋅ −

=:
t k d
d 1 k

1.1611
slab 1 f1

f1 1

Thickness of concrete cover measured from extreme tension fiber to cen-
ter of bar is

	 dc1 := tslab – df1 = 1·in.

Bond factor (provided by the manufacturer) is

	 kb = 0.9

The crack width under service loads (Equation (8-9) of ACI 440.1R-06) is

	 β ⋅ ⋅ 



 ⋅w := 2

f
E

k d +
s

2
= 0.011 in1

fs1

f
11 b cl

2 f_bar1
2

.
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The crack width limit for the selected exposure is

	 wlim = 0.028·in.

	

≤
Check_Crack1 :=

“OK” if w w

“Not good” otherwise

1 lim

	 Check_Crack1 = “OK”

The maximum recommended bar spacing to limit cracking based on 
Ospina and Bakis [2] is

	 s := min 1.2
E .w
f .k

2.5 c , 0.95
E w
f k

= 17.9 inOspina_1
f lim

fs1 b
c

f lim

fs1 b

⋅ − ⋅ ⋅ ⋅
⋅







⋅ .

	

≤
Check_SpacingOspina1 :=

“OK” if s s

“Not good” otherwise

f_bar1 Ospina_1

	 Check_SpacingOspina1 = “OK”

6.8.2  Case 2—Midspan

Ratio of modulus of elasticity of bars to modulus of elasticity of concrete is

	 nf = 1.4

Ratio of depth of neutral axis to reinforcement depth, calculated per 
Equation (8-12), is

	 k2 = 0.108

Tensile stress in GFRP under service loads is

	
⋅ ⋅ −





⋅f :=
M

A d 1
k
3

= 16.2 ksifs2
s2

f2 f2
2

Ratio of distance from neutral axis to extreme tension fiber to distance 
from neutral axis to center of tensile reinforcement is

	 ( )β − ⋅
⋅ −

:=
t k d
d 1 k

=1.1612
slab 2 f2

f2 2
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Thickness of concrete cover measured from extreme tension fiber to cen-
ter of bar is

	 dc2 := tslab – df2 = 1·in.

Bond factor (provided by the manufacturer) is

	 kb = 0.9

The crack width under service loads (Equation (8-9) of ACI 440.1R-06) is

	 β + 



w := 2

f
E

·k · d
s

2
= 0.019·in2

fs2

f
12 b

2
c2

f_bar2
2

.

The crack width limit for the selected exposure is

	 wlim = 0.028·in.

	

≤
Check_Crack2 :=

“OK” if w w

“Not good” otherwise

2 lim

	 Check_Crack2 = “OK”

The maximum recommended bar spacing to limit cracking based on 
Ospina and Bakis [2] is

	 −








S := min 1.2.

E ·w
f ·k

2.5·c ,0.95·
E ·w
f ·k

= 10.4·inOspina_2
f lim

fs2 b
c

f lim

fs2 b

.

	

≤
Check_SpacingOspina2 :=

“OK” if s s

“Not good” otherwise

f_bar2 Ospina_2

	 Check_SpacingOspina2 = “OK”

6.8.3  Case 3—Interior support

Ratio of modulus of elasticity of bars to modulus of elasticity of concrete is

	 nf = 1.4

Ratio of depth of neutral axis to reinforcement depth, calculated per 
Equation (8-12), is

	 k3 = 0.108
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Tensile stress in GFRP under service loads is

	

f :=
M

A ·d · 1
k
3

=22.6·ksifs3
s3

f3 f3
3−





Ratio of distance from neutral axis to extreme tension fiber to distance 
from neutral axis to center of tensile reinforcement is

	 ( )β −
−

:=
t k ·d
d · 1 k

= 1.1613
slab 3 f3

f3 3

Thickness of concrete cover measured from extreme tension fiber to cen-
ter of bar is

	 dc3 := tslab – df3 = 1·in.

Bond factor (provided by the manufacturer) is

	 kb = 0.9

The crack width under service loads (Equation (8-9) of ACI 440.1R-06) is

	 w :=2
f
E

·k · d +
s

2
= 0.026·in3

fs3

f
13 b c3

2 f_bar3
2

β 



 .

The crack width limit for the selected exposure is

	 wlim = 0.028·in.

	

≤
Check_Crack3 :=

“OK” if w w

“Not good” otherwise

3 lim

	 Check_Crack3 = “OK”

The maximum recommended bar spacing to limit cracking based on 
Ospina and Bakis [2] is

	 −








s := min 1.2·

E ·w
f ·k

2.5·c , 0.95·
E ·w
f ·k

= 7.5·inOspina_3
f lim

fs3 b
c

f lim

fs3 b

.

	

≤
Check_SpacingOspina3 :=

“OK” if s s

“Not good” otherwise

f_bar3 Ospina_3

	 Check_SpacingOspina3 = “OK”
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6.9 � STEP 7—CHECK MAXIMUM 
MIDSPAN DEFLECTION

The service bending moment diagram for the exterior bay is shown next.
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Ms1 = 2.1.kip.ft 

Section
Ms2 = 3.6.kip.ft 

Section
Ms3 = 5.kip.ft 

Exterior bay 1-foot slab strip:
The maximum allowable deflection is

	 ∆ =:=
1

480
0.425·inlim

1 .

Preliminary calculations: The depth of the neutral axis of the gross 
section is

	 = =d :
t
2

4·ing
slab .

The gross moment of inertia is

	
= ⋅ = ⋅I :

b t
12

512 ing
slab
3

4

The negative cracking moment is

	
=

⋅
= ⋅ ⋅M :

f I
d

6 kip ftcrNeg
r g

g

The positive cracking moment is

	
=

⋅
−

= ⋅ ⋅M :
f I

t d
6 kip ftcrPos

r g

slab g
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Cracked moment of inertia: The cracked moment of inertia, Icr, 
is computed per Equation (8-11) of ACI 440.1R-06 at the following 
locations:

6.9.1  Case 1—Exterior support

	
)(⋅ ⋅ ⋅ ⋅ − ⋅I :=

b d
3

k + n A d 1 k =23 incr1
f1
3

1
3

f f1 f1
2

1
2 4

The reduction coefficient related to the reduced tension stiffening is 
exhibited in the FRP reinforced members, computed per Equation (8-13b) 
of ACI 440.1R-06:

	
:=

1
5

=0.125d1
f1

fb1

β ⋅ ρ
ρ







6.9.2  Case 2—Midspan

	
)(⋅ ⋅ ⋅ ⋅ − ⋅I :=

b d
3

k + n A d 1 k =23 incr2
f2
3

2
3

f f2 f2
2

2
2 4

	
:=

1
5

=0.125d2
f2

fb2

β ⋅ ρ
ρ







6.9.3  Case 3—Interior support

	
)(⋅ ⋅ ⋅ ⋅ − ⋅I :=

b d
3

k + n A d 1 k =23 incr3
f3
3

3
3

f f3 f3
2

3
2 4

	
:=

1
5

=0.125d3
f3

fb3

β ⋅ ρ
ρ







Average effective moment of inertia: The average effective moment 
of inertia, Ie, is computed as indicated in Section 9.5.2.4 of ACI 318-11. 
Branson’s equation is used (Equation 9-7 of ACI 318-11).

The bending moment at midspan due to service loads is

	 MsPos := Ms2 = 3.6 ⋅ kip ⋅ ft
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The bending moment at the continuous end due to service loads is

	 MsNeg := Ms3 = 5 ⋅ kip ⋅ ft

The value of Ie at midspan is

	

I :=
M
M

I + 1
M
M

I =186 ine2
crPos

sPos

3

d2 g
crPos

sPos

3

cr2
4





β ⋅ − 

















⋅

The value of Ie at the continuous end is

	

I :=
M
M

I + 1
M
M

I =83 ine3
crNeg

sNeg

3

d3 g
crNeg

sNeg

3

cr3
4





β ⋅ −


















⋅

The average value of Ie is (as defined in Chapter 4):

	 Ie := 0.85·Ie2 + 0.15·Ie3 = 170·in.4

Deflection at midspan: Calculate the moment at midspan due to service 
load on a simply supported beam, Mo:

	
M :=

w .1
8

= 7.2·ft·kipo
S 1

2

The maximum deflection under service loads is

	 :=
5·M ·1
48E ·I

M + M ·
1

16E ·I
= 0.221·inSL

o 1
2

c e
s1 s3

1
2

c e
( )∆ − .

Deflection due to dead loads only is

	 := ·
w
w

= 0.11·inDL SL
D

S
∆ ∆ .

Deflection due to live loads only is

	 := ·
w
w

= 0.111·inLL SL
L

S
∆ ∆ .

Multiplier for time-dependent deflections at 5 years (ACI 318-11) is

	 ξ := 2
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The reduction parameter (Equation 8-14b of ACI 440.1R-06) is

	 λ := 0.60ξ := 1.2

Long-term deflection is

	 ΔLT := ΔLL + λ · (ΔDL + 0.20 · ΔLL) =0.27·in.

	 Δlim = 0.425·in.

	

Check_ :=
“OK” if

“Not good” otherwise
LT

LT lim
∆

∆ ≤ ∆

	 Check_ΔLT = “OK”

The midspan deflection diagram follows.
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n 
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 in

Note: de�ections due to dead loads and the ones due to live loads are identical.

Long term de�ections
Dead load de�ections
Live load de�ections
De�ection limit
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6.10  STEP 8—CHECK SHEAR CAPACITY

6.10.1  Case 1—Exterior support

The maximum shear at the face of the supports is

	 Vul = 2.209·kip

The concrete shear capacity, Vc, can be calculated per Equation (9-1) of 
ACI 440.1R-06, where k is the ratio of depth of neutral axis to reinforce-
ment depth, calculated per Equation (8-12):

	
V :=5 f ·psib· k .d = 3.2·kipCl c 1 f1( )′

As discussed in Chapter 4, the following is verified:

Check_ConcreteShear1 :=
“OK” if V 0.8 f ·psib·d 0.8 f ·psib·d 4.8·kip

“Use V ” otherwise

C1 c f1 c f1

cmin

( )≥ ′ ′ =

	 Check_ConcreteShear1 = “Use Vcmin”

	
V := 0.8 f ·psib·dcmin1 c f1′

The shear reduction factor given by ACI 440.1R-06 is adopted:

	 ϕv := 0.75

	 ϕv Vcmin1 = 3.56·kip

	

Check_Shear1 :=
“OK” if .V V

“Shear reinforcement isneeded” otherwise

v cmin1 ulφ ≥

	 Check_Shear1 = “OK”

6.10.2  Case 2—Interior support

The maximum shear at the face of the supports is

	 max (Vu3, Vu4) = 3.021·kip
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The concrete shear capacity, Vc, can be calculated per Equation (9-1) of 
ACI 440.1R-06, where k is the ratio of depth of neutral axis to reinforce-
ment depth, calculated per Equation (8-12):

	 )(⋅ ⋅ ⋅ ⋅V := 5 f psib k d =3.2 kipC3 c 3 f3

As discussed in Chapter 4, the following is verified:

	

Check_ConcreteShear3:=

“OK”if V 0 8 f psib.d

0 8 f psib d = 4.8 kip

“UseV ” otherwise

C3 c f3

c f3

cmin

( )
≥ ⋅ ′ ⋅

⋅ ′ ⋅ ⋅ ⋅

	 Check_ConcreteShear1 = “Use Vcmin”

	
V := 0.8 f psib·dcmin3 c f3′ ⋅

The shear reduction factor given by ACI 440.1R-06 is adopted:

	 ϕv = 0.75

	 ϕv·Vcmin3 = 3.56·kip

	

Check_ConcreteShear3:=
“OK” if V max V ,V

“Shear reinforcement isneeded” otherwise

v cmin3 u3 u4( )φ ⋅ ≥

	 Check_Shear3 = “OK”

6.11 � STEP 9—DESIGN THE FRP REINFORCEMENT 
FOR SHRINKAGE AND TEMPERATURE

The recommended minimum FRP reinforcement ratio, ρf,smin, to limit 
cracks due to shrinkage and temperature is given by Equation (10-1) of ACI 
440.1R-06. ρf,s is recommended not to be smaller than 0.0014 but need not 
be larger than 0.0036.
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Equation (10-1) of ACI 440.1R-06 is

	
:=min 0.0018·

60000psi
f

·
29000ksi

E
,0.0036 = 0.0036fts_des

fu f

ρ 





The corresponding minimum area of GFRP reinforcement is

	 Afts_des := ρfts_des·b·tslab = 0.346·in.2

The required number of no. 4 bars is

	
N :=

A
A

=1.76fs_des
fts_des

f_bar

The corresponding required spacing is

	
− ⋅ φ ⋅s :=

b N
N

=6.318 infs_des
fs_des f_bar

fs_des

.

The following bar spacing is selected:

	 sf_ts := 6 in.

	

( )≤ ⋅
Check_s :=

“OK”if s min 3 t , 12 in

“Notgood” otherwise
f_ts

f_ts slab

	 Check_sf_ts = “OK”

The area of GFRP temperature and shrinkage reinforcement is

	
⋅ ⋅A :=

b
s

A = 0.39 inf_ts
f_ts

f_bar
2

The FRP reinforcement ratio (Equation (8-2) of ACI 440.1R-06) is

	
:=

A
b·t

= 0.00409f_ts
f_ts

slab

ρ

No. 4 bars spaced 6 in. center to center are necessary if a single layer is 
used. For convenience and symmetry, top and bottom layers are used here 
with No. 4 bars spaced 12 in. center to center.
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6.12 � STEP 10—FIRE SAFETY CHECK FOR FLEXURAL 
STRENGTH PER NIGRO ET AL. (2014)

The fire safety check for bending moment capacity is performed follow-
ing the methodology proposed by Nigro et al. (2014) and discussed in 
Section 4.12. The interior bay only is considered. It is assumed that the 
slab is unprotected when exposed to fire on the side of the fibers under ten-
sion. For the purpose of the calculations, a 60-minute fire exposure time 
is assumed.

Step A. Estimate the FRP bar temperature Tf (in degrees Celsius) in the 
event of a fire for a fire exposure time t (minutes).

t := 60 Fire exposure time in minutes
cc = 0.75⋅in Longitudinal bar clear concrete cover

Nigro et al. recommend the following expression for t = 60 min and for 
a concrete cover of 0.787 in.

Tf := −4586.1 + 4221.2⋅t0.0470 = 531 FRP bar temperature in degrees 
Celsius

Step B. Estimate the reduction factors of the FRP tensile strength and 
modulus of elasticity at the temperature Tf computed in Step A.

The following expressions are recommended to estimate the tensile 
strength and modulus reduction factors for GFRP bars at the temperature 
computed in Step A.

:=
0.05

0.05 8.0 10 T
0.117

FRP bar tensile strength reduction factor
at temperature T (in degrees celsius)ft 11

f
3.55

f
ρ

+ ⋅ ⋅
=−

:=
0.28

0.28 6.0 10 T
0.082

FRP bar tensile strength reduction factor
at temperature T (in degrees celsius)ET 12

f
4.3

f
ρ

+ ⋅ ⋅
=−

Step C. Estimate the embedment length of a bar with a temperature 
higher than 50 degrees Celsius at a fire exposure time t.

Nigro et  al. propose the following equation to estimate the reduced 
embedment length of an FRP bar at 50 degrees Celsius for a concrete cover 
of 0.787 in. and an exposure time t (equal to 60 min in this case).

	 ldf_50C := (−23.43 + 15.38⋅t0.4660)mm = 3.158⋅in

Step D. Estimate the ultimate strength of the end anchorage in fire condi-
tions at time t.
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Nigro et  al. propose the following equation to estimate the ultimate 
strength of the end anchorage in a zone with a temperature of at least 50 
degrees Celsius.

	
f :=

l l
0.1

ksi = 456.8 ksif_50C
d df_50C

f_bar

−
⋅ φ

⋅

Step E. Estimate the maximum bar stress.
The maximum usable FRP bar stress can be computed as the smaller of 

the tensile strength at a temperature Tf (computed in Step A) and the end 
anchorage strength at 50 degrees Celsius.

	 ff_fire := min(ρfT ⋅ ffu,ff_50C) = 9⋅ksi

The reduced FRP tensile modulus of elasticity can be computed as fol-
lows using the reduction factor computed in Step B.

	 Ef_fire := ρET ⋅ Ef = 468⋅ksi

The ultimate FRP tensile strain can, therefore, be computed as follows.

	
:=

f
E

0.02f_fire
f_fire

f_fire

ε =

Step F. Compute the reduced bending moment capacity at a fire exposure 
time of 120 min.

The following stress - strain relationship is assumed for the concrete in 
compression:

	

:=
f

3
0.0025

2
0.0025

if 0.0025

f
0.02

0.02 0.0025
if 0.0025 0.02

c_fire c

c

c
3 c

c
c c

( )σ ε
′ ⋅

⋅ ε





+ ε





ε ≤

′ ⋅ − ε
−

≤ ε ∧ ε ≤

c

c

The FRP design properties are substituted with the reduced FRP proper-
ties estimated in Step E. It is assumed that the failure is controlled by the 
FRP failure.

The effective concrete compressive strain at failure as a function of the 
neutral axis depth, x, is:

	 (x,y) :=
d x

yc2_fire
f_fire

f2

ε ε
−

⋅
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The effective tensile strain in the FRP reinforcement at failure is:

	 εf2_fire := εf_fire

The compressive force in the concrete as a function of the neutral axis 
depth, x, is:

	

(X) : b f
3

(x,y)
0.0025

2
(x,y)

0.0025

dy

. f
0.02 (x,y)

0.02 0.0025
dy

c2_fire c
0in

d -x 0.0025 c2_fire

c2_fire
3

c

d -x 0.0025

x

c2_fire

f2

f_fire

f2

f_fire

∫

∫

= ⋅ ′ ⋅
⋅ ε





+ ε





+ ′ ⋅ − ε
−

( )

( )

⋅
ε

⋅
ε

C

b

The tensile force in the FRP reinforcement is:

	 Tf2_fire(x) := Af2 ⋅ Ef_fire ⋅ εf2_fire

The neutral axis depth, cu, can be computed by solving the equation of 
equilibrium Cc−Tf = 0:

	 First guess: x02_fire := 0.1df2 Given: f2_fire(x) := Cc2_fire(x) − Tf2_fire(x) 
cu2_fire := root (f2_fire (x02_fire), x02_fire)

The neutral axis depth is:

	 cu2_fire = 0.381⋅in

The contribution of the concrete in compression is:

with: d -c 0.0025
=0.767 inf2 u2

f_fire

( ) ⋅
ε

⋅

	

M := b y.f .
3

c ,

0.0025

2
c ,

0.0025

dy

+ b c f
0.02 c ,y

0.02 0.0025
dy

n2_fire_Conc c

0in

0.767in
c2_fire u2

c2_fire u2
3

u2 c

0.767in

c

c2_fire u2
u2_fire

y

y∫

∫

( )

( )

( )

⋅ ′
⋅

ε





+
ε





⋅ ⋅ ′ ⋅
− ε

−
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The contribution of the FRP reinforcement is:

	 Mn2_fire_FRP := Tf2_fire (cu2_fire)⋅(df2 − cu2_fire)

The total nominal bending moment is:

	 Mn2_fire := Mn2_fire_Conc + Mn2_fire_FRP = 1.49⋅kip⋅ft

The bending moment under service load at mid-span as computed in Step 
3 is:

	 Ms2 = 3.57⋅kip⋅ft

	

Check_Bending Moment_Fire :=
"OK" if M M

"Not good" otherwise
n2_fire s2≥

	 Check_Bending Moment_Fire = “Not good”

The unprotected slab is not adequate to carry the service loads in the 
event of a fire for an exposure time of 60 minutes. A solution could be, for 
example, to increase the concrete cover to 1.25 inches. In this way, the total 
nominal bending moment would also increase to 3.9 kip-ft and exceed the 
service demand of 3.57 kip-ft.
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Chapter 7

Design of a T-beam

7.1  INTRODUCTION

The floor plan of a two-story medical facility building is shown in 
Figure 7.1. The column spacing is dictated by the size of the equipment that 
occupies the ground floor. The second floor system is a one-way RC slab 
spanning along the east–west direction. The building is located in a region 
of low seismicity. This example describes the procedure to design beam 
AB-3. Loading of each floor consists of the self-weight, a superimposed 
dead load of 2.5 psf, and a live load of 100 psf.

The design is discussed as a sequence of nine steps as summarized here:

Step 1  Define beam geometry and concrete properties
Step 2  Compute factored loads
Step 3  Compute ultimate and service bending moments and shear forces
Step 4  Design FRP primary reinforcement for bending moment capacity
Step 5  Check creep-rupture stress
Step 6  Check crack width
Step 7  Check maximum midspan deflection
Step 8  Design FRP reinforcement for shear capacity
Step 9  Compute FRP contribution to torsional strength

The beam design is summarized in the next section and discussed in 
detail in the following ones.

7.2  DESIGN SUMMARY

Considering a T-beam of dimensions 14 in. (bw) by 28 in. (h), the following 
loads are considered:

Dead load	 2.31 kip/ft
Live load for positive moments	 1.29 kip/ft
Live load for negative moments	 1.05 kip/ft
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Total factored load for positive moments	 4.88 kip/ft
Total factored load for negative moments	 4.49 kip/ft
Service load for positive moments	 3.64 kip/ft
Service load for negative moments	 3.39 kip/ft

Bending moments and shear forces for beam AB-3 are computed at the sup-
port and midspan sections, as summarized in Table 7.1.

The design is limited to the first span (beam AB-3) because of symme-
try. The required FRP reinforcement for both flexure and shear is given in 
Table 7.2, while Table 7.3 shows a summary of demands and capacities at 
critical sections.

The final bar layout is selected to optimize rebar production time and 
construction effort. Bar layout and typical details are shown in Figure 7.2(a) 
and 7.2(b).

Table 7.4 is provided to convert US customary units to the SI system.

Table 7.1  Bending moments and shear forces

Section

Bending moment Shear force

Moment 
coefficient

Ultimate 
moment (kip-ft)

Service 
moment (kip-ft)

Shear 
coefficient

Ultimate 
shear (kip)

Exterior 
support 

1/24 145 111 1.0 62

Midspan 1/14 271 204 0.15 10
Interior 
support

1/10 349 266 1.15 72

A

B

C

1 2 4

30 ft

30 ft

17 ft 17 ft20 ft

AB-3

3

Figure 7.1 � Second-floor plan.
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7.3 � STEP 1—DEFINE BEAM GEOMETRY 
AND CONCRETE PROPERTIES

7.3.1  Geometry

The beam has two spans of length l1 and l2:

l1 := 30 ft
l2 := 30 ft

The widths of the two adjacent bays are

lt1 := 17 ft
lt2 := 20 ft

The slab thickness is

tslab := 8 in.

The column width is

bcol := 24 in.

A clear top and bottom concrete cover, cc, is

cc := 1.5 in.

Table 7.2  Beam geometry and reinforcement

Section Height Width Primary reinforcement Shear reinforcement

Exterior support Four no. 8 No. 4 @ 3 in.

Midspan 28 in. 14 in. Eight no. 8 in two layers No. 4 @ 13 in. (max 
spacing)

Interior support Ten No. 8 No. 4 @ 3 in.

Table 7.3  Beam design summary

Limit state Section Demand/computed Capacity/limit

Ultimate Flexural 
strength

Exterior support 145 kip-ft 205 kip-ft
Midspan 271 kip-ft 504 kip-ft
Interior support 349 kip-ft 563 kip-ft

Shear 
strength

Interior support 72 kip 80 kip

Serviceability Creep 
rupture

Exterior support 6.4 ksi 12.8 ksi
Midspan 12.0 ksi
Interior support 12.5 ksi

Crack width Exterior support 0.016 in. 0.028 in.
Midspan 0.013 in.
Interior support 0.021 in.

Maximum midspan deflection 0.446 in. 1.0 in.
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Note that the clear cover in this design example is intended for the longi-
tudinal bars and thus is smaller than what is required in steel RC construc-
tion where it is measured from the stirrup. The reason for this choice is to 
stress that cover requirements in GFRP construction can be relaxed if their 
only purpose is to ensure reinforcement protection from deterioration due 
to corrosion.

Define beam dimensions: Table 8-2 of ACI 440.1R-06 guides the selec-
tion by recommending minimum values for the beam height. For an end 
bay, the recommended depth is

	 h : round
l

12 in
in = 30 inACI

1=
⋅







⋅ .

It has to be noted that these values are only a starting point for the design. 
If a different beam height, h, is selected, deflections need to be computed. In 
this example, a different height is selected:

h := 28 in.

The width of the beam is

bw := 14 in.

Table 7.4  Conversion table

US customary SI units

Lengths, areas, section properties
1 in. 25.4 mm

0.025 m
1 ft 304.8 mm

0.305 m
1 in.2 645 mm2

1 ft2 0.093 m2

1 in.3 16,387 mm3

1 in.4 416,231 mm4

Forces, pressures, strengths
1 lbf 4.448 N
1 kip 4.448 kN
1 lbf-ft 1.356 N.m
1 kip-ft 1.356 kN.m
1 psi 6.895 kPa
1 psf 47.88 N/m2

1 ksi 6.895 MPa
1 ksf 47.88 kN/m2

1 lbf/ft3 157.1 N/m3
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The effective width of the beam flanges is computed according to Section 
8.10.2 of ACI 318-11:

	 b : min
l
4

,8 t ,
l
2

b +
l
2

= 64 ineff
1

slab
t1

w
t2= ⋅ +





⋅ .

7.3.2  Concrete properties

The following concrete properties are considered for the design:

f ′c := 6000 psi	 Compressive strength
εcu := 0.003	 Ultimate compressive strain

: 145
lbf
ft

c 3ρ = 	 Density

E : 33psi
lbf ft

fc
0.5 c

3

1.5

c=
ρ
⋅





 ⋅ ′− 	 Compressive modulus of elasticity

Ec := 4463∙ksi	 Computed as indicated in ACI 318-11

f : 7.5 psi fr
0.5

c= ⋅ ⋅ ′ 	 Concrete tensile strength

fr = 581∙psi	 Computed as indicated in ACI 318-11

The stress-block factor, β1, is computed as indicated in ACI 318-11:

	

β =

′ = =

− ⋅ ′ < ′ <:

0.85 if f 4000psi 0.75

1.05 0.05
f

1000psi
if 4000psi f 8000psi

0.65 otherwise

1

c

c
c

7.3.3 � Analytical approximations of 
concrete compressive stress–strain 
curve—Todeschini’s model

Compressive strain at peak:

	
:

1.71 f
E

= 0.0023c0
c

c
ε =

⋅ ′

Compressive stress at peak:

	
" : 0.5

f
ssi

c
cσ = ⋅ ′
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Stress–strain curve equation:

	

:
2 "

1
c c

c
c

c0

c

c0

2( )σ ε =
⋅ σ ⋅ ε

ε






+ ε
ε







0 0.001 0.002 0.0030

2000

4000

6000
Concrete Compressive Stress-Strain Curve

Strain, in./in.

St
re

ss
, p

si

7.4  STEP 2—COMPUTE FACTORED LOADS

The self-weight is computed considering a concrete density of 145 psf. 
Other dead loads such as floor cover (0.5 psf) and ceiling (2 psf) are con-
sidered. A live load of 100 psf was requested by the owner. The following 
unfactored uniform loads are considered:

SW := tslab∙ρc = 96.7∙psf	 Slab self-weight
OD := 2.5 psf	 Other dead loads
DL := SW + OD = 99.2∙psf	 Total dead load
LLo := 100 psf	 Live load

The ASCE 7-10 design-loading code allows live-load reductions based on 
tributary areas multiplied by a live-load element factor, KLL = 2, to convert 
the tributary area to an influence area. The live-load element factor is

	 KLL := 2

Beams 23-B and 43-B: The tributary area for positive moment is

	 ATPos := (1t1·0.5·+ 1t2·0.5)·11 = 555·ft2

The tributary area for negative moment is

	 ATNeg := (1t1·+ 1t2)·11 = 1110·ft2
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The reduced live load for positive moments is

	

LL : LL 0.25
15

K A ft
= 70 psfPos o

LL TPos
2

= ⋅ +
⋅ ⋅









 ⋅

−

The reduced live load for negative moments is

	

LL : LL 0.25
15

K A ft
= 56.8 psfNeg o

LL TNeg
2

= ⋅ +
⋅ ⋅













⋅
−

The reduced live load cannot be less than 50% of the unreduced live load 
for members supporting one floor.

	

CheckLL :
“OK” if LL 0.50 LL

“Not OK” otherwise
Pos

Pos o=
≥ ⋅

	 CheckLLPos = “OK”

	

CheckLL :
“OK” if LL 0.50 LL

“Not OK” otherwise
Neg

Neg o=
≥ ⋅

	 CheckLLNeg = “OK”

The dead load per unit length (including the beam’s self-weight) is

	
w : DL l 0.5 + l 0.5 + 1.2 h b = 2.31

kip
ft

D t1 t2 w c( ) ( )= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ρ ⋅

The live load per unit length for computing maximum positive moments is

	
w : LL l 0.5 + l 0.5 = 1.3

kip
ft

LPos Pos t1 t2( )= ⋅ ⋅ ⋅ ⋅

The live load per unit length for computing maximum negative moments is

	
w : LL l 0.5 + l 0.5 = 1.05

kip
ft

LNeg Neg t1 t2( )= ⋅ ⋅ ⋅ ⋅

The governing load combination for computing the total factored load, 
wTFL, is load combination Equation (9-2) defined in ASCE 7-10. Total fac-
tored load for positive moments is

	
w : 1.2w + 1.6 w = 4.84

kip
ft

TFLPos D LPos= ⋅ ⋅
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Total factored load for negative moments is

	
w : 1.2w + 1.6 w = 4.45

kip
ft

TFLNeg D LNeg= ⋅ ⋅

Total service load for positive moments is

	
w : w + w = 3.6

kip
ft

SPos D LPos= ⋅

Total service load for negative moments is

	
w : w + w = 3.36

kip
ft

SNeg D LNeg= ⋅

7.5 � STEP 3—COMPUTE BENDING 
MOMENTS AND SHEAR FORCES

Bending moments and shear forces are determined as indicated in ACI 
318-11. The moment coefficients can be used as the beam satisfies the 
requirements specified in ACI 318-11. In fact, there are two spans; the ratio 
of the longer clear span to the shorter clear span is less than 1.2, the loads 
are uniformly distributed, the unfactored live load does not exceed three 
times the unfactored dead load, and the members are prismatic. Clear span 
values, ln, are computed considering a column width of 24 in.:

	 ln := l1 – bcol = 28∙ft

Bending moments

Exterior support

C :
1

24
mNeg1 = 	 Moment coefficient

MuNeg1 := CmNeg1·WTFLNeg·1n
2 = 145·ft·kip	 Ultimate bending moment

Ms1 := CmNeg1·WSNeg·1n
2 = 145·ft·kip	 Service bending moment

Midspan

C :
1

14
mPos = 	 Moment coefficient

MuPos := CmPos·WTFLPos·1n
2 = 271·ft·kip	 Ultimate bending moment

Ms2 := CmPos·WSPos·1n
2 = 202·ft·kip	 Service bending moment

Interior support

C :
1

10
mNeg2 = 	 Moment coefficient
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MuNeg2 := CmNeg2·WTFLNeg·1n
2 = 349·ft·kip	 Ultimate bending moment

Ms3 := CmNeg2·WSNeg·1n
2 = 263·ft·kip	 Service bending moment

Shear forces

Exterior support

Cv1 := 1	 Moment coefficient

V : C w
l
2

62 kipu1 v1 TFLNeg
n= ⋅ ⋅ = ⋅ 	 Ultimate bending moment

Midspan

Cv2 := 0.15	 Moment coefficient

V : C w
l
2

10 kipu2 v2 TFLPos
n= ⋅ ⋅ = ⋅ 	 Ultimate bending moment

Interior support

Cv3 := 1.15	 Moment coefficient

V : C w
l
2

72 kipu3 v3 TFLNeg
n= ⋅ ⋅ = ⋅ 	 Ultimate bending moment

7.6 � STEP 4—DESIGN FRP PRIMARY REINFORCEMENT 
FOR BENDING MOMENT CAPACITY

The design is limited to the first span (beam AB-3) because of the symmetry 
of the structure. The following cross sections at beam AB-3 are considered:

	 1.	Exterior support cross section
	 2.	Midspan cross section
	 3.	Interior support cross section

Ultimate bending moment diagram:

0 6 12 18 24 30

–488.7

–331.3

–173.9

–16.5

140.9

298.3

Beam B1, ft

2
1

2

1
3

3

Section
Mu1 = 145.kip.ft 

Section
Mu2 = 271.kip.ft 

Section
Mu3 = 349.kip.ft 

Select the FRP reinforcement: For the purpose of this design example, it 
is assumed that GFRP bars of the same size are used as longitudinal rein-
forcement for both positive and negative moments.
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Type_of_Fiber :=
Glass
Carbon

Bar_Size :=
#2
#3
#4
#5
#6
#7
#8
#9
#10

ACI 440.6-08 minimum guaranteed mechanical properties of the 
selected bars are

ffuu = 80∙ksi	 Ultimate guaranteed tensile strength of the FRP
εfuu = 0.014	 Ultimate guaranteed rupture strain of the FRP
Ef = 5700∙ksi	 Guaranteed tensile modulus of elasticity of the FRP

n :
E
E

= 1.277f
f

c
= 	� Ratio of modulus of elasticity of bars to modulus of 

elasticity of concrete

The geometrical properties of the selected bars are

ϕf_bar = 1∙in.	 Bar diameter
Af_bar = 0.785∙in.2	 Bar area

FRP reduction factors: Table 7-1 of ACI 440.1R-06 is used to define the 
environmental reduction factor, CE. The type of exposure has to be selected:

Type_of_Exposure :=
Interior
Exterior

CE = 0.8	 Environmental reduction factor for GFRP

Table 8-3 of ACI 440.1R-06 is used to define the reduction factor to take 
into account the FRP creep-rupture stress. Creep stress in the FRP has to 
be evaluated considering the total unfactored dead loads and the sustained 
portion of the live load (20% of the total live load):

kcreep_R = 0.2	 Creep-rupture stress limitation factor

Crack width is checked using Equation (8-9) of ACI 440.1R-06. A crack 
width limit, wlim, of 0.028 in. is used for interior exposure, while 0.020 in. 
is used for exterior exposure:

wlim = 0.028∙in.	 Crack width limit
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FRP ultimate design properties: The ultimate design properties are 
calculated per Section 7.2 of ACI 440.1R-06:

ffu := CE∙ffuu = 64∙ksi		  Design tensile strength
εfu = CE∙εfuu = 0.0112	 Design rupture strain

FRP creep-rupture limit stress: The FRP creep-rupture limit stress is 
calculated per Section 8.4 of ACI 440.1R-06:

	 ff_creep := kcreep_R∙ffu = 12.8∙ksi

7.6.1  Case 1—Exterior support

Reinforcement required to resist bending moments: As discussed in Chapter 4, 
the following design condition shall be satisfied: ϕMn > Mu. When the failure 

is due to concrete crushing: φ = φ − β



M A f d

2
c .n f fu f

1
u  Considering the lower 

bound condition (ϕMn = Mu) and solving for Af, the following can be written:

= φ − β











=A M A f d
2

c ›f—req—bend u f fu f
1

u

	 = ρ = = φ − β















› A bd M A f d

2
c bdf—req—bend f—req—bend f u f fu f

1
u f

Assuming a ϕ-factor of 0.65 and a neutral axis depth equal to 15% of the 
effective reinforcement depth, the longitudinal reinforcement ratio required 
for bending, ρf_req_bend, can be estimated. The effective reinforcement depth is

	
d : h c

2
=26 in.f1 c

f_bar= − − φ ⋅

The longitudinal reinforcement ratio required for bending is

	

ρ =
⋅ ⋅ − β ⋅





⋅
⋅

:
M

0.65 f d
2

0.15d

1
b d

= 0.00472f_req_bend1
u1

fu f1
1

f1
w f1

The minimum reinforcement requirement has to be verified. Equation 
(8–8) of ACI 440.1R-06 is used. If the failure is not governed by FRP rup-
ture, this requirement is automatically achieved:

	

A : min
4.9 f psi

f
b d ,

300psi
f

b d = 1.706 inf_min1
c

fu
w f1

fu
w f1

2( )=
⋅ ′ ⋅

⋅ ⋅












⋅

	
:

A
b d

= 0.004687f_min1
f_min1

w f1

ρ =
⋅
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The design reinforcement ratio required for bending is taken as

	 ρf_bend1 := max(ρf_req_bend1, ρf_min1) = 0.004716

Reinforcement ratio required for creep-rupture stress check: For the case 
of GFRP reinforcement, the limitation to the creep-rupture stress could be 
governing for the design. The bending moment to consider for the creep-
rupture stress check is obtained for the combination DL + 0.20 LL, as shown:

	
M : M

w + 0.20w
w

= 82.3 ft kip1_creep0 s1
D LNeg

SNeg
= ⋅ ⋅ ⋅

The limit stress is

	 ff_creep = 12.8∙ksi

The ratio of depth of neutral axis to reinforcement depth, kf, can be writ-
ten as a function of the reinforcement ratio, ρf_creep:

	
k : 2 n n nf_creep1 f_creep f_creep f f_creep f

2
f_creep f( ) ( )ρ = ⋅ρ ⋅ + ρ ⋅ − ρ ⋅

The tensile stress in the FRP can also be expressed as a function of the 
reinforcement ratio, ρf_creep:

	

f :
M

b d 1
k

3

f1_creep0 f_creep
1_creep0

f_creep w f1
2 f_creep1 f_creep

( ) ( )ρ =
ρ ⋅ ⋅ ⋅ −

ρ









Solving for ρf_creep:
First guess:

	 ρf_creep0 := 0.002

Given:

	 fρ1(ρf_creep) := ff1_creep0(ρf_creep) – (ff_creep)

	 ρf_creep1 := root(fρ1(ρf_creep0), ρf_creep0)

The reinforcement ratio required for creep rupture is

	 ρf_creep1 = 0.0085

FRP longitudinal reinforcement design: The design reinforcement ratio 
can be selected as the maximum between ρf_bend and ρf_creep:

	 Ρf_des1 := max(ρf_bend1, ρf_creep1) = 0.0085
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This reinforcement ratio corresponds to an area of

	 Af_des1 := ρf_des1∙bw∙df1 = 3.109∙in.2

The required number of bars is

	
N :

A
A

= 3.958f_des1
f_des1

f_bar
=

As discussed in Chapter 4, the failure mode depends on the amount of 
FRP reinforcement. If ρf is larger than the balanced reinforcement ratio, ρfb, 
then concrete crushing is the failure mode. If ρf is smaller than the balanced 
reinforcement ratio, ρfb, then FRP rupture is the failure mode.

Equation (8–3) of ACI 440.1R-06:

	
: 0.85

f'
f

E
E +f

= 0.0126fb1 1
c

fu

f cu

f cu fu

ρ = β ⋅ ⋅ ⋅ ε
⋅ ε ⋅

The selected reinforcement ratio is smaller than the ratio corresponding 
to the balanced conditions, as shown:

	
= 1.476fb1

f_des1

ρ
ρ

The following number of FRP bars is selected:

	 Nbar1 := 4

	 Af1 := Nbar1∙Af_bar = 3.142∙in2

The corresponding FRP reinforcement ratio is (Equation 8-2 of ACI 
440.1R-06):

	
:

A
b d

= 0.00863f1
f1

w f1

ρ =
⋅

FRP bar spacing: The clear bar spacing is

	
s :

b N c 1in
N 1

= 19.167 in.f10_clear
eff bar1 f_bar c

bar1
=

− ⋅φ − −
−

⋅

The clear bar spacing is taken equal to

	 sf1_clear := 3 in.

The minimum required bar spacing is

	 sf_min1 := max(1∙in, ϕf_bar) = 1∙in.
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Check_BarSpacing1 :
“OK” if s s

“Too many bars” otherwise
f1_clear f_min1

=
≥

	 Check_BarSpacing1 = “OK”

The center-to-center bar spacing is

	 sf1 := sf1_clear + ϕf_bar = 4∙in.

Design flexural strength: Based on cross-section compatibility, the effec-
tive concrete compressive strain distribution at failure can be computed as 
a function of the neutral axis depth, x:

	

(x,y) :
x

y if

d x
y if <

c1

cu
f1 fb1

fu

f1
f1 fb1

ε =

ε ρ ≥ ρ

ε
−

⋅ ρ ρ

Based on cross-section compatibility, the effective tensile strain in the 
FRP reinforcement can be computed as a function of the neutral axis 
depth, x:

	

(x) :

if <

min
x

d x ,
iff1

fu f1 fb1

cu
f1 fu

f1 fb1( )ε =
ε ρ ρ

ε ⋅ − ε





ρ ≥ ρ

The compressive force in the concrete as a function of the neutral axis 
depth, x, is

	

C (x) : b
2 "

(x,y)

1
(x,y)

psi dyc1 w

c
c1

c0

c1

c0

2
0in

x

∫= ⋅
⋅ρ ⋅ ε

ε






+ ε
ε







The tensile force in the FRP reinforcement as a function of the neutral 
axis depth, x, is

	 Tf1(x) := Af1∙Ef∙εf1(x)
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The neutral axis depth, cu, can be computed by solving the equation of 
equilibrium Cc – Tf = 0:

First guess:

	 x01 := 0.1df1

Given:

	 f1(x) := Cc1(x) – Tf1(x)

	 cu1 := root (f1(x01),x01)

The neutral axis depth is

	 cu1 = 4.038∙in.

The nominal bending moment capacity can be computed as follows:

M : b y
2 "

(c ,y)

1
(c ,y)

psi dy T c d c 410 ft kipn1 w

c
c1 u1

c0

c1 u1

c0

2
0

c

f1 u1 f1 u1

u1

∫ ( )( )= ⋅ ⋅
⋅ σ ⋅ ε

ε






+ ε
ε



















+ ⋅ − = ⋅ ⋅

The strain distribution over the cross section is shown next.

εcu = 0.003 εf1(cu1) = 0.01123

εc1(cu1, cu1) = 0.0021

ρf1 = 8.631 × 10–3

df1 = 26in ρfb1 = 0.0126

εfu = 0.01123

Af

The concrete crushing failure mode is less brittle than the one due to FRP 
rupture. The ϕ-factor is calculated according to Jawahery and Nanni [1]:
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:

0.65 if 1.15
c

2
0.65

0.75 if 1.15
c

2
0.75

1.15
c

2
otherwise

: 0.65

b1

f1 u1

fu

f1 u1

fu

f1 u1

fu

b1

( )

( )

( )

φ =

−
ε

ε
≤

−
ε

ε
≥

−
ε

ε

φ =

The design flexural strength equation is computed per Equation (8-1) of 
ACI 440.1R-06:

	 ϕb1∙Mn1 = 267∙kip∙ft

Check_Flexure1:
“OK” if M M ( ·M 267 kip f)

“Not good” otherwise (M · 145.44 kip ft)
b1 n1 u1 b1 n1

b1
=

φ ⋅ ≥ φ = ⋅ ⋅
= ⋅ ⋅

	 Check_Flexure1 = “OK”

Flexural strength computed per ACI 440.1R-06: The tensile stress in the 
FRP is computed per Equation (8-4c) when ρf > ρfb, or is ffu if ρf < ρfb.

f :
E

4
0.85 f'

E 0.5E if =64 ksi (f =64 ksi)

f otherwise

f1

f cu
2

1 c

f1
f cu f cu f1 fb1 fu

fu

( )
=

⋅ε
+ β ⋅

ρ
⋅ε − ⋅ε ρ ≥ ρ ⋅ ⋅

ff cannot exceed ffu; therefore, the following has to be checked:

CheckMaxStress1 :
“OK” if f f

“Reduce bar spacing or increase bar size” otherwise
f1 fu

=
≤

	 CheckMaxStress1 = “OK”

The stress-block depth is computed per Equation (8-4b) or Equation 
(8-6c) depending on whether ρf > ρfb or ρf < ρfb, respectively.

a :

A f
0.85 f' b

if Equation (8-4b) of ACI 440.1R-06

d otherwise Equation (8-6c) of ACI 440.1R-06
f1

f1 f1

c w
f1 fb1

1
cu

cu fu
f1

=

⋅
⋅ ⋅

ρ ≥ ρ

β ⋅ ε
ε + ε



















Design of a T-beam  263

	 af1 = 4.112∙in.

Neutral axis depth is

	
c :

a
= 5.482 in.f1

f1

1
=

β
⋅

The nominal moment capacity is

	
M : A f d

a
2

= 401 ft kipnACI_1 f1 f1 f1
f1= ⋅ ⋅ −



 ⋅ ⋅

The concrete crushing failure mode is less brittle than the one due to 
FRP rupture. The ϕ-factor is computed according to Equation (8-7) of ACI 
440.1R-06:

	

:

0.55 if 0.55

0.30 0.25 if 1.4

0.65 otherwise

bACI_1

f1 fb1

f1

fb1
fb1 f1 fb1

φ =

ρ ≤ ρ =

+ ⋅ ρ
ρ

ρ < ρ < ⋅ρ

The design flexural strength equation is computed per Equation (8-1) of 
ACI 440.1R-06:

	 ϕbACI_1·MnACI = 221·kip·ft

Check_FlexureACI_1:
“OK”if M M M =145 kip ft

“Notgood” otherwise

bACI_1 nACI_1 u1 u1( )
=

φ ⋅ ≥ ⋅ ⋅

	 Check_FlexureACI_1 = “OK”

Embedment length: Because this is a case of negative reinforcement, it 
has to be checked if adequate moment capacity can be achieved at the end 
of the embedment length. The available length for embedment is

	 1emb1 := 12 in.

The developable tensile stress is calculated per Equation (11-3) of ACI 
440.1R-06. Minimum between cover to bar center and half of the center-
to-center bar spacing is

	
C : min c

2
,
s
2

2 inb1 c
f _bar f1= + φ



 = ⋅
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Bar location modification factor for top reinforcement is

	 αNeg1 := 1.5

Required stress in the FRP is

	 ffr1 := Ef·εf1(cu1) = 64·ksi

The developable tensile stress (ACI 440.1R-06 Equation 11-3) is

f :

f if
f psi

13.6
1 C 1

340 f 27.2 ksi

f' psi
13.6

1 C 1
340 otherwise

fd11

fu
c

Neg1

emb1

f_bar

b1

f_bar

emb1

f_bar
fu

c

Neg1

emb1

f_bar

b1

f_bar

emb1

f_bar

=

⋅
α

⋅ ⋅
φ

+
φ

⋅
φ

+






≥ = ⋅

⋅
α

⋅ ⋅
φ

+
φ

⋅
φ

+


















	

CheckFailure1:
“Barultimatestrength” if f f

“Barstrength” otherwise

fd11 fr1

=
≥

	 CheckFailurel = “Bondstrength”

The cross section of interest is a bond-critical section. The nominal 
moment capacity, therefore, has to be computed as per ACI 440.1R-06 
Equation (8-5) or ACI 440.1R-06 Equation (8-6b) when the failure mode is 
concrete crushing or bond, respectively.

M :
A f d

1
2

A f
0.85 f b

ifCheckFailure “Bondstrength”

M if checkFailure “Barultimatestrength”

n1b1
f1 fd11 f1

f1 f1

c w

n1

==

==

=
⋅ ⋅ − ⋅ ⋅

⋅ ′ ⋅


















	 Mn1b1 = 175·ft·kip

The ultimate moment is

	 Mu1 = 145·ft·kip

The strength-reduction factor when failure is controlled by bond is

	

:
0.55 ifCheckFailure1 “Bondstrength” 0.55

ifCheckFailure1 “Barultimatestrength”
b1_bond

b1

φ =
= =

φ =
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The design flexural strength is therefore:

	 ϕb1_bond·Mn1b1 = 96·kip·ft

	

Check_FlexureNeg1b :
“OK” if M M

“Notgood” otherwise
b1_bond n1b1 u1

=
φ ⋅ ≥

	 Check_FlexureNeg1b = “Not good”

Because the embedment length is not adequate, the addition of bent bars 
is required. The geometrical properties of the selected bent bars are

Bent_Bar_Size :=
#2
#3
#4
#5
#6
#7
#8
#9
#10

ϕf_bent = 1·in.	 Bar diameter
Af_bent = 0.785·in.2	 Bar area
rb := 3ϕf_bent = 3·in.	 Radius of the bend

The minimum guaranteed ultimate tensile strength of the selected bar is

	 ffuu_bent = 80·ksi

The design strength of the selected bar is

	 ffuu_bent := CE· ffuu_bent = 64·ksi

The design tensile strength of the bend of FRP bar is

f : 0.05
r

0.3 f 28.8 ksi ACI 440.1R-06 Eq (7-3)f_bent
b

f_bent
fu_bent= ⋅

φ
+









 = ⋅ ⋅

Determine which is smaller between the strength of the bend and the 
bond strength of the end of the longitudinal bar.

=
≥ = ⋅

Check_BentBar :
“strength of bend controls” if f f (f 27.2 ksi)

“strength of bend controls” otherwise

f_bent fd11 fd11
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	 Check_BentBar = “Strength of bend controls”

The development length of the bent bar is computed per ACI 440.1R-06 
Equation (11-5):

	

=

⋅ φ
′

≤ = ⋅

⋅ φ
′

< <

⋅ φ
′

≥

1 :

2000 psi
f

if f 75000 psi 25.8 in

f
37.5 psi f

if 75000 psi f 150000 psi

2000 psi
f

if f 150000 psi

bhf_min

f_bent

c
fu

fu f_bent

c
fu

f_bent

c
fu

The following development length, lbhf, is considered.

	
1 : round

1
in

1 in 27 in.bhf
bhf_min= 



 +







= ⋅

The tail of the bent bar is to be at least 12 bar diameters:

Bar = "#8"

Bent_Bar = "#8"

rb = 3.in

lbhf = 27.in

bw = 14.in

lemb1 = 12.in

ltail = 12.in

	 1tail := 12·ϕf_bent = 12·in.

Recompute the new area of reinforcement and its corresponding ratio for 
straight bars and bends:

	 Af1new := Af1 + Af1
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:

A
b d

0.017261f1new
f1new

w f1

ρ =
⋅

=

The stress-block depth is recomputed based on the presence of straight 
bars and an equal number of bends:

	

a :

A f
0.85 f b

if Equation(8-4b)of ACI440.1R-06

d otherwise Equation(8-4c)of ACI440.1R-06

f1new

f1new f_bent

c w
f1new fb1

1
cu

cu fu
f1

=

⋅
⋅ ′ ⋅

ρ ≥ ρ

β ⋅ ε
ε + ε

















	 af1new = 2.534·in.

Neutral axis depth is

	
c :

a
3.379 in.f1new

f1new

1
=

β
= ⋅

The nominal moment capacity is

	
M : A f d

a
2

373 ft kipnnew f1new f_bent f1
f1new= ⋅ ⋅ −



 = ⋅ ⋅

The ϕ-factor is 0.55 when bond controls:

	 ϕbond := 0.55

The design flexural strength equation is computed per Equation (8-1) of 
ACI 440.1R-06:

	 ϕbond·Mnnew = 205 kip·fit

Check_Flexure_bond_1:
“OK” if M M (M 145 kip ft)

“Notgood” otherwise

bond nnew u1 u1
=

φ ⋅ ≥ = ⋅ ⋅

	 Check_Flexure_bond_1 = “OK”
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7.6.2  Case 2—Midspan

Following the same approach discussed for Case 1, the minimum reinforce-
ment ratio required for bending can be selected. Because this section is at 
midspan, a T-section is considered. The effective reinforcement depth is

	
d : h c

2
26 in.f2 c

f_bar= − − φ = ⋅

The gross-sectional area is

	 Ac2 := tslab·beff + bw·(df2 – tslab) = 764·in.2

The longitudinal reinforcement ratio required for bending is

	

ρ =
⋅ ⋅ − β ⋅





⋅ =− :
M

0.65 f d
2

0.15d

1
A

0.00419f_ req_bend2
u2

fu f2
1

f2
c2

The minimum reinforcement ratio is computed per Equation (8-8) of ACI 
440.1R-06:

	

A : min
4.9 f psi

f
b d ,

300psi
f

b d 1.706 inf_min2
c

fu
w f2

fu
w f2

2( )=
⋅ ′ ⋅

⋅ ⋅












= ⋅

	
:

A
A

0.002233f _ min2
f_min2

c2
ρ = =

The design reinforcement ratio required for bending is taken as

	 ρf_bend2 := max(ρfreq_bend2, ρf_kmin2) = 0.004189

Reinforcement ratio required for creep-rupture stress check: For the case 
of GFRP reinforcement, the limitation to the creep-rupture stress could be 
governing for the design. The bending moment to consider for the creep-
rupture stress check is obtained for the combination DL + 0.20 LL, as 
shown:

	
M : M

w 0.20w
w

143.8 ft kip2_ creep0 s2
D LPos

SPos
= ⋅ + = ⋅ ⋅

The limit stress is

	 ff_creep = 12.8·ksi
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The ratio of depth of neutral axis to reinforcement depth, kf, can be writ-
ten as a function of the reinforcement ratio, ρf_creep:

	
k : 2 n n nf_creep2 f_creep f_creep f f_creep f

2
f_creep f( ) ( )ρ = ⋅ρ ⋅ + ρ ⋅ − ρ ⋅

The tensile stress in the FRP can also be expressed as a function of the 
reinforcement ratio, ρf_creep:

	

f :
M

A d 1
k

3

f2_ creep0 f_creep
2_ creep0

f_creep c2 f2
f_creep2 f_creep

( ) ( )ρ =
ρ ⋅ ⋅ ⋅ −

ρ









Solving for ρf_creep:
First guess:

	 ρf_creep20 := 0.002

Given:

	 fρ2(ρf_creep) := ff2_creep0(ρf_creep) – (ff_creep)

	 ρf_creep2 := root(fρ2(ρf_creep20), ρf_creep20)

The reinforcement ratio required for creep-rupture is

	 ρf_creep2 := 0.0071

FRP longitudinal reinforcement design: The design reinforcement ratio 
can be selected as the maximum between ρf_bend and ρf_creep:

	 ρf_creep2 := max(ρf_bend2, ρf_creep2) = 0.0071

This reinforcement ratio corresponds to an area of

	 Af_des1 := ρf_des2·Ac2 = 5.411·in.2

The required number of bars is

	
N :

A
A

6.889f_des2
f_des2

f_bar
= =

As discussed in Chapter 4, the failure mode depends on the amount of 
FRP reinforcement. If ρf is larger than the balanced reinforcement ratio, ρfb, 
then concrete crushing is the failure mode. If ρf is smaller than the balanced 
reinforcement ratio, ρfb, then FRP rupture is the failure mode.
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Equation (8-3) of ACI 440.1R-06 is

	
: 0.85

f
f

E
E f

0.0126fb2 1
c

fu

f cu

f cu fu

ρ = β ⋅ ′ ⋅ ⋅ ε
⋅ ε +

=

The selected reinforcement ratio is smaller than the ratio corresponding 
to the balanced conditions, as shown:

	
1.779fb2

f_des2

ρ
ρ

=

Because the reinforcement is to be placed on two levels, an even number 
of FRP bars is selected:

	 Nbar2 := 8

The total area of FRP reinforcement is

	 Af2 := Nbar2·Af_bar = 6.283·in.2

The corresponding FRP reinforcement ratio is (Equation 8-2 of ACI 
440.1R-06)

	
:

A
A

0.00822f2
f2

c2
ρ = =

FRP bar spacing: The clear bar spacing is

	
s :

b N c 1in
N 1

0.5 inf20_ clear
w bar2 f _bar c

bar2
=

− ⋅φ − −
−

= ⋅

The minimum required bar spacing is

	 Sf_min2 := max(1·in, ϕf_bar) = 1·in.

	

Check_BarSpacing2 :
“OK” if s s

“Toomanybars” otherwise

f20_clear f_min2

=
>

	 Check_BarSpacing = “Too many bars”

	 TwoManyBars := ✓ □Check Box

The flexural FRP reinforcement is placed in two layers:
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First layer of FRP reinforcement

Nbar2I := 4	 Number of bars
Af2I := Nbar2I·Af_bar = 3.142·in.2	 Area of FRP reinforcement

d : h c
2

26 inf2I c
f_bar= − − φ = ⋅ 	 Effective depth

Second layer of FRP reinforcement

Nbar2II := 4	 Number of bars
Af2II := Nbar2II·Af_bar = 3.142·in.2	 Area of FRP reinforcement

d : h c s
2

24 inf2II c f_bar f_min2
f_bar= − − φ − − φ = ⋅ 	 Effective depth

Check_FRPreinforcement :
“OK” if N N N

“Increasethenumberofbars” otherwise

bar2I bar2II bar2

=
+ ≥

Check_FRPreinforcement = “OK”

The clear spacing for the first layer is

	
s :

b 2c N 1in
N 1

2 inf21_ clear
w c bar2I f_bar

bar2I
=

− − ⋅φ −
−

= ⋅

and for the second layer is

	
s :

b 2c N 1in
N 1

2 inf22_ clear
w c bar2II f _bar

bar2II
=

− − ⋅φ −
−

= ⋅

	

Check_BarSpacing22 :
“OK” if min s ,s s

“Toomanybars” otherwise

f21_ clear f22_ clear f_min2( )
=

>

	 Check_BarSpacing22 = “OK”

The center-to-center bar spacing for the first layer is

	 s : s 3 in.f21 f21_clear f_bar= + φ = ⋅

and for the second layer is

	 s : s 3 in.f22 f22_ clear f_bar= + φ = ⋅
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Design flexural strength: The effective concrete compressive strain at 
failure as a function of the neutral axis depth, x, is

	

x,y :
x

y if

d x
y if

c2

cu
f2 fb2

fu

f2
f2 fb2

( )ε =

ε ⋅ ρ ≥ ρ

ε
−

⋅ ρ < ρ

The effective tensile strain in the first layer of FRP reinforcement as a 
function of the neutral axis depth, x, is

	

(x):

if <

min
x

d x , if
f2I

fu f2 fb2

cu
f2I fu f2 fb2( )ε =

ε ρ ρ

ε ⋅ − ε





ρ ≥ ρ

The compressive force in the concrete as a function of the neutral axis 
depth, x, is

(x) :

x,x
x

s if N 0

min
x

d x ,
x

s if N 0

0 otherwise

f2II

fu
c2

f_bar f_min2 f2 fb2 bar2II

cu
f2II fu

cu
f_bar f_min2 f2 fb2 bar2II

( )

( )( )

( )

ε =

ε −
ε

⋅ φ + ρ < ρ ∧ >

ε ⋅ − ε − ε ⋅ φ +





ρ ≥ρ ∧ >

The compressive force in the concrete as a function of the neutral axis 
depth, x, is

	

C (x) : b
2 "

(x,y)

1
(x,y)

psidyc2 eff

c
c2

c0

c2

c0

2
0in

x

∫= ⋅
⋅ σ ⋅ ε

ε






+ ε
ε







The tensile force in the first layer of FRP reinforcement as a function of 
the neutral axis depth, x, is

	 Tf2I(x) := Af2I·Ef·εf2I(x)

The tensile force in the second layer of FRP reinforcement as a function 
of the neutral axis depth, x, is
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	 Tf2II(x) := Af2II·Ef·εf2II(x)

The neutral axis depth, cu, can be computed by solving the equation of 
equilibrium Cc – Tf = 0:

First guess:

	 x02 := 0.1df2

Given:

	 f2(x):= Cc2(x) – (Tf2I(x) + Tf2II(x))

	 cu2 := root(f2(x02),x02)

The neutral axis depth is

	 cu2 = 2.458·in.

Check_Netral Axis Depth :

“The neutral axis falls within the flange depth” if c t

“A T-section analysis has to be conducted” otherwise
u2 slab

=

≤

Check_NetralAxisDepth = “The neutral axis falls within the flange depth”

The nominal bending moment capacity can be computed as follows:

	

M : b y

2 "
c ,y

1
c ,y

psidy T c d c

T c d c

n2 eff

c
c2 u2

c0

c2 u2

c0

2
0

c

f2I u2 f2I u2

f2II u2 f2II u2

u2

∫ ( )

( )

( )

( )
( )

( )

= ⋅ ⋅
⋅ σ ⋅

ε
ε








+
ε

ε


















+ ⋅ −

+ ⋅ −

	 Mn2 = 776·kip·ft

The strain distribution over the cross section is shown next.
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Af I

Af II

εf2I(cu2) = 0.01123
εf2II(cu2) = 0.01027 εcu = 0.003

εc2(cu2, cu2) = 0.00117εfu = 0.011

ρf2 = 0.008

ρfb2 = 0.0126df2 = 26·in

The concrete crushing failure mode is less brittle than the one due to FRP 
rupture. The ϕ-factor is calculated according to Jawahery and Nanni [1]:

	

:

0.65 if1.15
c

2
0.65

0.75 if1.15
c

2
0.75

1.15
c

2

0.65

b2I

f2I u2

fu

f2I u2

fu

f2I u2

fu

b2I

( )

( )

( )

φ =

−
ε

ε
≤

−
ε

ε
≥

−
ε

ε

φ =

	

:

0.65 if1.15
c

2
0.65

0.75 if1.15
c

2
0.75

1.15
c

2

0.692

b2II

f2II u2

fu

f2II u2

fu

f2II u2

fu

b2II

( )

( )

( )

φ =

−
ε

ε
≤

−
ε

ε
≥

−
ε

ε

φ =

	 ϕb2 := min(ϕb2I, ϕb2II) = 0.65

The design flexural strength equation is computed per Equation (8-1) of 
ACI 440.1R-06:

	 ϕb2·Mn2 = 504·kip·ft
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Check_Flexure2 :
“OK” if M M M 271 kip ft

“Not good” otherwise

b2 n2 u2 u2( )
=

φ ⋅ ≥ = ⋅ ⋅

	 Check_Flexure2 = “OK”

Flexural strength computed per ACI 440.1R-06: The tensile stress in the 
FRP is computed per Equation (8-4c) when ρf > ρfb, or is ffu if ρf < ρfb:

f :

E
4

0.85 f'
E 0.5E if 64 ksi

f otherwise

f2

f cu
2

1 c

f2
f cu f cu f2 fb2

fu

( )
=

⋅ ε
+ β ⋅

ρ
⋅ ε − ⋅ ε ρ ≥ ρ = ⋅

ff cannot exceed ffu; therefore, the following has to be checked:

CheckMaxStress2 :
“OK” if f f f 64 ks

“Reduce bar spacing or increase bar size” otherwise

f2 fu fu( )
=

≤ = ⋅

	 CheckMaxStress1 = “OK”

The stress-block depth is computed per Equation (8-4b) or Equation 
(8-6c) depending on whether ρf > ρfb or ρf < ρfb, respectively.

a :

A f
0.85 f' b

if Equation(8-4b) of ACI 440.IR-06

d d
2

otherwise Equation(8-6c)of ACI 440.IR-06

a 3.953 in

f2

f2 f2

eff
f2 fb2

1
cu

u fu

f2I f2II

f2

=
⋅ ⋅

ρ ≥ ρ

β ⋅ ε
ε + ε







+









= ⋅

Neutral axis depth is

	
c :

a
5.482 in.f2

f1

1
=

β
= ⋅

The nominal moment capacity is

	
M : A f d

a
2

805 ft kipnACI_2 f2 f2 f2
f2= ⋅ ⋅ −



 = ⋅ ⋅
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The concrete crushing failure mode is less brittle than the one due to 
FRP rupture. The ϕ-factor is computed according to Equation (8-7) of ACI 
440.1R-06:

	

:

0.55 if 0.55

0.30 0.25 if 1.4

0.65 otherwise

bACI_2

fb2

f2

fb2
fb2 f2 fb2

φ =

ρ =

+ ⋅ ρ
ρ

ρ < ρ < ⋅ρ

The design flexural strength equation is computed per Equation (8-1) of 
ACI 440.1R-06:

	 ϕbACI_2·MnACI_2 = 443·kip·ft

Check_FlexureACI_2 :
“OK” if M M M 271 kip ft

“Not good” otherwise

bACI_2 nACI_2 u2 u2( )
=

φ ⋅ ≥ = ⋅ ⋅

	 Check_FlexureACI_2 = “OK”

Development of positive moment reinforcement: The development length, 
ld, for straight bars can be calculated using Equation (11-3) of ACI 440.1R-06:

Minimum between cover to bar center and half of the center-to-center 
bar spacing is

	
C : min c

2
,
s
2

,
s
2

1.5 in.b2 c
f_bar f21 f22= + φ



 = ⋅

Bar location modification factor for bottom reinforcement is

	 αPos := 1

The minimum development length is computed according to ACI 440.1R-06 
Equation (11-6):

	

1 :

f
f psi

340

13.6
C 32.201 in.d_min

Pos
fu

c

b2

f_bar

f_bar=
α ⋅

′ ⋅
−

+
φ

φ = ⋅

The following development length is used and is available to develop the 
required moment capacity:

	 ld := 33 in.
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7.6.3  Case 3—Interior support

Reinforcement required to resist bending moments: The same approach 
discussed for Case 1 is followed. The effective reinforcement depth is

	
d : h c

2
26 in.f3 c

f_bar= − − φ = ⋅

The longitudinal reinforcement ratio required for bending is

( )ρ =
⋅ ⋅ − β ⋅





⋅
⋅

= = ⋅ ⋅:
M

0.65 f d
2

0.15d

1
b d

0.01132 M 349 kip ftf_req_bend3
u3

fu f3
1

f3
w f3

u3

The minimum reinforcement requirement has to be verified. Equation 
(8-8) of ACI 440.1R-06 is used. If the failure is not governed by FRP rup-
ture, this requirement is automatically achieved:

	

A : min
4.9 f psi

f
b d ,

300psi
f

b d 1.706 inf_min3
c

fu
w f3

fu
w f3

2( )=
⋅ ′ ⋅

⋅ ⋅












= ⋅

	
:

A
b d

0.004687f_min3
f_min3

w f3

ρ =
⋅

=

The design reinforcement ratio required for bending is taken as

	
: max , 0.0113f_bend3 f_req_bend3 f_min3( )ρ = ρ ρ =

Reinforcement ratio required for creep-rupture stress check: The bend-
ing moment to consider for the creep-rupture stress check is

	
M : M

w 0.20w
w

197.5 ft kip3_ creep0 s3
D LNeg

SNeg
= ⋅

+
= ⋅ ⋅

The limit stress is

	 ff_creep = 12.8·ksi

The ratio of depth of neutral axis to reinforcement depth, kf, can be writ-
ten as a function of the reinforcement ratio, ρf_creep:

	
k : 2 n n nf_creep3 f_creep f_creep f f_creep f

2
f_creep f( ) ( )ρ = ⋅ρ ⋅ + ρ ⋅ − ρ ⋅
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The tensile stress in the FRP can also be expressed as a function of the 
reinforcement ratio, ρf_creep:

	

f :
M

b d 1
k

3

f3_ creep0 f_creep
3_ creep0

f_creep w f3
2 f_creep3 f_creep

( ) ( )ρ =
ρ ⋅ ⋅ ⋅ −

ρ









Solving for ρf_creep:

	 ρf_creep0 = 0.002

Given: 

	 fρ3(ρf_creep) := ff3_creep0(ρf_creep) – (ff_creep)

	 ρf_creep3 := root(fρ3(ρf_creep0), ρf_creep0)

The reinforcement ratio required for creep rupture is

	 ρf_creep3 := 0.021

FRP longitudinal reinforcement design: The design reinforcement ratio 
can be selected as the maximum between ρf_bend and ρf_creep:

	 ρf_des3 := max(ρf_bend3, ρf_creep3) = 0.021

This reinforcement ratio corresponds to an area of

	 Af_des3 := ρf_des3·bw·df3 = 7.646·in.2

The required number is

	
N :

A
A

9.735f_des3
f_des3

f_bar
= =

As discussed in Chapter 4, the failure mode depends on the amount of 
FRP reinforcement. If ρf is larger than the balanced reinforcement ratio, ρfb, 
then concrete crushing is the failure mode. If ρf is smaller than the balanced 
reinforcement ratio, ρfb, then FRP rupture is the failure mode.

Equation (8-3) of ACI 440.1R-06 is

	
: 0.85

f
f

E
E f

0.0126fb3 1
c

fu

f cu

f cu fu

ρ = β ⋅ ′ ⋅ ⋅ ε
⋅ ε +

=

The selected reinforcement ratio is larger than the ratio corresponding to 
the balanced conditions, as shown:

	
0.6fb3

f_des3

ρ
ρ

=
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The following number of FRP bars is selected:

	 Nbar3 := 10

	 Af3 := Nbar3·Af_bar = 7.854·in.2

The corresponding FRP reinforcement ratio is (Equation 8-2 of ACI 
440.1R):

	
:

A
b d

0.02158f3
f3

w f3

ρ =
⋅

=

FRP bar spacing: The clear bar spacing is

	
s :

b N c 1in
N 1

5.722 in.f30_ clear
eff bar3 f_bar c

bar3
=

− ⋅φ − −
−

= ⋅

The clear bar spacing is taken equal to

	 Sf3_clear := 5 in.

The minimum required bar spacing is

	 Sf_min3 := mac(1·in, φf_bar) = 1· in.

	

Check_BarSpacing3 :
“OK” if s s

“Too many bars” otherwise
f3_ clear f_min3

=
≥

	 Check_BarSpacing3 = “OK”

The center-to-center bar spacing is

	 Sf3 := Sf3_clear + φf_bar = 6 in.

Design flexural strength: The effective concrete compressive strain at 
failure as a function of the neutral axis depth, x, is

	

x,y :
x

y if

d x
x if

c3

cu
f3 fb3

cu

f3
f3 fb3

( )ε =

ε ρ ≥ ρ

ε
−

⋅ ρ < ρ
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The effective tensile strain in the FRP reinforcement as a function of the 
neutral axis depth, x, is

	

(x) :

if <

min
x

d x , if
f3

fu f3 fb3

cu
f3 fu f3 fb3( )ε =

ε ρ ρ

ε ⋅ − ε





ρ ≥ ρ

The compressive force in the concrete as a function of the neutral axis 
depth, x, is

	

C (x) : b

2 "
x,y

1
x,y

psidyc3 w

c
c3

c0

c3

c0

2
0in

x

∫
( )

( )
= ⋅

⋅ σ ⋅
ε

ε







+
ε

ε







The tensile force in the FRP reinforcement as a function of the neutral 
axis depth, x, is

	 Tf3(x) := Af3·Ef·εf3(x)

The neutral axis depth, cu, can be computed by solving the equation of 
equilibrium Cc – Tf = 0:

First guess:

	 x03 := 0.1df3

Given:

	 f3(x) := Cc3(x) – Tf3(x)

	 cu3 := root(f3(x03),x03)

The neutral axis depth is

	 cu3 = 6.7 in.

The nominal bending moment capacity can be computed as follows:

M : b y

2 "
c ,y

1
c ,y

psidy T c d c 750 ft kipn3 w

c
c3 u3

c0

c3 u3

c0

2
0

c

f3 u3 f3 u3

u3

∫ ( )
( )

( )
( )= ⋅ ⋅

⋅ σ ⋅
ε

ε







+
ε

ε


















+ ⋅ − = ⋅ ⋅
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The strain distribution over the cross section is shown next.

df3 = 26·in

Af

εf3(cu3) = 0.00863εcu = 0.003

εc3(cu3, cu3) = 0.003 εfu = 0.01123

ρf3 = 0.022

ρfb3 = 0.0126

The ϕ-factor is calculated according to Jawahery and Nanni [1].

	

( )

( )

( )

φ =

−
ε

ε
≤

−
ε

ε
≥ =

−
ε

ε

:

0.65 if 1.15
c

2
0.65

0.75 if 1.15
c

2
0.75 0.75

1.15
c

2
otherwise

b3

f3 u3

fu

f3 u3

fu

f3 u3

fu

The design flexural strength equation is computed per Equation (8-1) of 
ACI 440.1R-06:

	 ϕb3·Mn3 = 563·kip·ft

Check_Flexure3 :
“OK” if M M M 349 kip ft

“Notgood” otherwise

b3 n3 u3 u3( )
=

φ ⋅ ≥ = ⋅ ⋅

Check_Flexure3 = “OK”

Flexural strength computed per ACI 440.1R-06: The tensile stress in the 
FRP is computed per Equation (8-4c) when ρf > ρfb or is ffu if ρf < ρfb.

f :
E

4
0.85 f

E 0.5E if 47.2 ksi

f otherwise

f3

f cu
2

1 c

f3
f cu f cu f3 fb3

fu

( )
=

⋅ ε
+ β ⋅ ′

ρ
⋅ ε − ⋅ ε ρ ≥ ρ = ⋅
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ff cannot exceed ffu; therefore, the following has to be checked:

CheckMaxStress3 :
“OK” if f f f 64 ksi

“Reducebarspacingor increasebarsize” otherwise

f3 fu fu( )
=

≤ = ⋅

	 CheckMaxStress3 = “OK”

The stress-block depth computed per Equation (8-4b) or Equation (8-6c) 
depending on whether ρf > ρfb or ρf < ρfb, respectively, is

a :

A f
0.85 f' b

if Equation (8-4b) of ACI 440.1R-06

d otherwise Equation (8-6c) of ACI 440.1R-06

f3

f3 f3

c w
f3 fb3

1
cu

cu fu
f3

=

⋅
⋅ ⋅

ρ ≥ ρ

β ⋅ ε
ε + ε

















	 af3 = 5.188·in.

Neutral axis depth is

	
c :

a
6.918 in.f3

f3

1
=

β
= ⋅

The nominal moment capacity is

	
M : A f d

a
2

723 ft kipnACI_3 f3 f3 f3
f3= ⋅ ⋅ −



 = ⋅ ⋅

The concrete crushing failure mode is less brittle than the one due to 
FRP rupture. The ϕ-factor is computed according to Equation (8-7) of ACI 
440.1R-06:

	

φ =

ρ ≤ ρ

+ ⋅ ρ
ρ

ρ < ρ < ⋅ρ =:

0.55 if

0.30 0.25 if 1.4 0.65

0.65 otherwise

bACI_3

f3 fb3

f3

fb3
fb3 f3 fb3
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The design flexural strength equation is computed per Equation (8-1) of 
ACI 440.1R-06:

	 ϕbACI_3·MnACI_3 = 470·kip·ft

Check_FlexureACI_3 :
“OK” if M M M 349 kip ft

“Notgood” otherwise

bACI_3 nACI_3 u3 u3( )
=

φ ⋅ ≥ = ⋅ ⋅

Check_FlexureACI_3 = “OK”

Tension lap splice: The recommended development length of FRP ten-
sion lap splices is 1.3ld (Section 11.4 of ACI 440.1R-06). The minimum 
recommended tension lap splice development length is

	 1.3ld_min = 41.861·in.

where ld-min =32.2 in. as computed for the case of midspan.
The following minimum tension lap splice development length is consid-

ered and adopted:

	 ltls := 42 in.

Embedment length: Because this is a case of negative reinforcement, it 
has to be checked if adequate moment capacity can be achieved at the end 
of the embedment length. The maximum available length for embedment is 
equal to half the length of the adjacent span.

In this case, a quarter of the adjacent span is considered.

	 lemb3 := 0.25·12 = 90·in.

The developable tensile stress is calculated per Equation (11-3) of ACI 
440.1R-06. Minimum between cover to bar center and half of the center-
to-center bar spacing is

	
C : min c

2
,
s
2

2 in.b3 c
f_bar f3= + φ



 = ⋅

Bar location modification factor for top reinforcement is

	 αNeg3 := 1.5

Required stress in the FRP:

	 ffr3 := Ef·εf3(cu3) = 49.191·ksi
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The developable tensile stress is (ACI 440.1R-06 Equation 11-3)

	

f :

f if
f psi

13 6
1 c 1

340 f

f psi
13 6

1 c 1
340 otherwise

fd13

fu
c

Neg3

emb3

f_bar

b3

f_bar

emb3

f_bar
fu

c

Neg3

emb3

f_bar

b3

f_bar

emb3

f_bar

=

′ ⋅
α

⋅ ⋅ ⋅
φ

+
φ

⋅
φ

+






≥

′ ⋅
α

⋅ ⋅ ⋅
φ

+
φ

⋅
φ

+


















	 ffd13 = 64·ksi

	

CheckFailure3 :
“Barultimatestrength” if f f

“Bondstrength” otherwise

fd13 fr3

=
≥

	 CheckFailure3 = “Bar ultimate strength”

The cross section of interest is not a bond-critical section and adequate 
moment capacity can be achieved.

Ultimate bending moment diagram—Exterior bay: Exterior bay 1-foot 
slab strip, ft:

Ultimate Bending Moment Diagram - Exterior Bay

0 6 12 18 24 30
–628.3

–394.2

–160

74.1

308.2
542.4

Exterior Bay 1-Foot Slab Strip, ft

2

1 3

Section Section 1 2 Section 3
Mu1 = 145.4kipft
φbondMnnew = 205kipft

Mu2 = 2712kipft
φb2Mn2 = 504kipft

Mu3 = 349.1kipft
φb3Mn3 = 563kipft

7.7  STEP 5—CHECK CREEP-RUPTURE STRESS

7.7.1  Case 1—Exterior support

Creep-rupture stress in the FRP has to be evaluated considering the total 
unfactored dead loads and the sustained portion of the live load (20% of 
the total live load).
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Bending moment due to dead load plus 20% of live load is

	
M : M

w 0.20w
w

82.3 ft kip1_ creep s1
D LNeg

SNeg
= ⋅

+
= ⋅ ⋅

Ratio of modulus of elasticity of bars to modulus of elasticity of con-
crete is

	 nf = 1.277

Ratio of depth of neutral axis to reinforcement depth, calculated per 
Equation (8-12):

	
k : 2 n n n 0.1891new f1new f f1new f

2
f1new f( )= ρ ⋅ + ρ ⋅ − ρ ⋅ =

The tensile stress in the FRP is

	

f :
M

A d 1
k

3

6.4 ksif1_ creep
1_ creep

f1new f1
1new

=
⋅ ⋅ −





= ⋅

	

Check_Creep1:
“OK” if f f f 12.8 ksi

“Notgood” otherwise

f1_ creep f_creep f_creep( )
=

≤ = ⋅

	 Check_Creep1 = “OK”

The strain distribution is shown next.

kcreep_Rεfu = 0.00225

εf1_creep = 0.00113

df1 = 26in

Af

Navier’s equation is applicable because the maximum concrete stress is 
smaller than 0.45f ′c:

	 Ec·εc_creepl = 1178·psi  < 0.45f ′c = 2700·psi
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7.7.2  Case 2—Midspan

Bending moment due to dead load plus 20% of live load is

	
M : M

w 0.20w
w

143.8 ft kip2_ creep s2
D LPos

SPos
= ⋅ + = ⋅ ⋅

Ratio of modulus of elasticity of bars to modulus of elasticity of concrete:

	 nf = 1.277

Ratio of depth of neutral axis to reinforcement depth, calculated per 
Equation (8-12):

	
k : 2 n n n 0.1352 f2 f f2 f

2
f2 f( )= ρ ⋅ + ρ ⋅ − ρ ⋅ =

The tensile stress in the FRP is computed, conservatively, assuming one 
single layer of reinforcement placed at the depth of the second layer, df2II:

	
( )

=
+ ⋅ ⋅ −





= ⋅f :
M

A A d 1
k
3

12.0 ksif2_creep
2_ creep

f2I f2II f2II
2

	

Check_Creep2 :
“OK” if f f f 12.8 ksi

“Notgood” otherwise

f2_creep f_creep f_creep( )
=

≤ = ⋅

	 Check_Creep2 = “OK”

kcreep_R·εfu = 0.00225

εf2_creep = 0.0021

εcheck_creep2 = 0.000327

df2II = 24·in

Af

Navier’s equation is applicable because the maximum concrete stress is 
smaller than 0.45f ′c:

	 Ec·εc_creep2 = 1462·psi  < 0.45f ′c = 2700·psi
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7.7.3  Case 3—Interior support

Bending moment due to dead load plus 20% of live load is

	
M : M

w 0.20w
w

197.5 ft kip3_ creep s3
D LNeg

SNeg
= ⋅

+
= ⋅ ⋅

Ratio of modulus of elasticity of bars to modulus of elasticity of concrete is

	 nf = 1.277

Ratio of depth of neutral axis to reinforcement depth, calculated per 
Equation (8-12), is

	
k : 2 n n n 0.2093 f3 f f3 f

2
f3 f( )= ρ ⋅ + ρ ⋅ − ρ ⋅ =

The tensile stress in the FRP is

	

f :
M

A d 1
k
3

12.5 ksif3_creep
3_ creep

f3 f3
3

=
⋅ ⋅ −





= ⋅

	

Check_Creep3 :
“OK” if f f f 12.8 ksi

“Notgood” otherwise

f3_creep f_creep f_creep( )
=

≤ = ⋅

	 Check_Creep3 = “OK”

kcreep_Rεfu = 0.00225

εf3_creep = 0.00219

df1 = 26·in

Af

Navier’s equation is applicable because the maximum concrete stress is 
smaller than 0.45f ′c:

	 Ec·εc_creep3 = 2577·psi  < 0.45f ′c = 2700·psi
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7.8  STEP 6—CHECK CRACK WIDTH

Crack width is checked using Equation (8-9) of ACI 440.1R-06. A crack 
width limit, wlim, of 0.028 in. is used for interior exposure.

7.8.1  Case 1—Exterior support

Ratio of modulus of elasticity of bars to modulus of elasticity of concrete is

	 nf = 1.277

Ratio of depth of neutral axis to reinforcement depth is

	 k1new = 0.189

Tensile stress in FRP under service loads is

	

f :
M

A d 1
k

3

8.604 ksifs1new
s1

f1new f1
1new

=
⋅ ⋅ −





= ⋅

Ratio of distance from neutral axis to extreme tension fiber to distance 
from neutral axis to center of tensile reinforcement is

	
:

h k d
d 1 k

1.09511
1new f1

f1 1new( )β =
− ⋅
⋅ −

=

Thickness of concrete cover measured from extreme tension fiber to cen-
ter of bar is

	 dc1 := h – df1 = 2·in.

Bond factor (provided by the manufacturer):

	 kb := 0.9

The crack width under service loads is (Equation 8-9 of ACI 440.1R-06):

	
w : 2

f
E

k d
s
2

0.008 in.1
fs1new

f
11 b c1

f1
2

2= β ⋅ ⋅ + 



 = ⋅

The crack width limit for the selected exposure is

	 wlim = 0.028 · in.



Design of a T-beam  289

	

Check_Crack1:
“OK” if w w

“Not good” otherwise
1 lim

=
≤

	 Check_Crack1 = “OK”

7.8.2  Case 2—Midspan

Ratio of modulus of elasticity of bars to modulus of elasticity of concrete is

	 nf = 1.277

Ratio of depth of neutral axis to reinforcement depth is

	 k2 = 0.135

Tensile stress in FRP under service loads assuming one layer of reinforce-
ment is

	

f :
M

A A d 1
k
3

15.5 ksifs2
s2

f2I f2II f2I
2( )

=
+ ⋅ ⋅ −





= ⋅

Ratio of distance from neutral axis to extreme tension fiber to distance 
from neutral axis to center of tensile reinforcement is

	
:

h k d
d 1 k

1.08912
2 f2

f2 2( )β =
− ⋅
⋅ −

=

Thickness of concrete cover measured from extreme tension fiber to cen-
ter of bar is

	 dc2 := h – df2 = 2·in.

Bond factor (provided by the manufacturer):

	 kb = 0.9

The crack width under service loads is (Equation 8-9 of ACI 440.1R-06):

	
w : 2

f
E

k d
s
2

0.013 in.2
fs2

f
12 b c2

2 f22
2

= β ⋅ ⋅ + 



 = ⋅

The crack width limit for the selected exposure is

	 wlim = 0.028·in.
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Check_Crack2 :
“OK” if w w

“Notgood” otherwise
2 lim

=
≤

	 Check_Crack2 = “OK”

7.8.3  Case 3—Interior support

Ratio of modulus of elasticity of bars to modulus of elasticity of concrete is

	 nf = 1.277

Ratio of depth of neutral axis to reinforcement depth is

	 k3 = 0.209

Tensile stress in FRP under service loads is

	

f :
M

A d 1
k
3

16.637 ksifs3
s3

f3 f3
3

=
⋅ ⋅ −





= ⋅

Ratio of distance from neutral axis to extreme tension fiber to distance 
from neutral axis to center of tensile reinforcement

	
:

h k d
d 1 k

1.09713
3 f3

f3 3( )β =
− ⋅
⋅ −

=

Thickness of concrete cover measured from extreme tension fiber to cen-
ter of bar is

	 dc3 := h – df3 = 2·in.

Bond factor (provided by the manufacturer) is

	 kb = 0.9

The crack width under service loads (Equation 8-9 of ACI 440.1R-06) is

	
w : 2

f
E

k d
s
2

0.021 in.3
fs3

f
13 b c3

2 f3
2

= β ⋅ ⋅ + 



 = ⋅

The crack width limit for the selected exposure is

	 wlim = 0.028·in.
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Check_Crack3 :
“OK” if w w

“Notgood” otherwise
3 lim

=
≤

	 Check_Crack3 = “OK”

7.9 � STEP 7—CHECK MAXIMUM 
MIDSPAN DEFLECTION

The service bending moment diagram is shown next.

0 6 12 18 24 30
Beam B1, ft

–Ms1 = –110.kip.ft

–Ms3 = –263.kip.ft

Ms2 = 202.kip.ft

Select the maximum allowable deflection:

	
:

1
360

1 in.lim
1∆ = = ⋅

Preliminary calculations: The depth of the neutral axis of the gross 
section is

	
d :

b
t
2

b
h t

2
b t b h t

8.9 ing

eff
slab
2

w

2
slab
2

eff slab w slab( )=
⋅ + ⋅ −

⋅ + ⋅ −
= ⋅

The gross moment of inertia is

	

I :
b t

12
b t d

t
2

b h t

12

b h t d h t

g
eff slab

3

eff slab g
slab

2
w slab

3

w slab g slab
2

( )

( ) ( )

=
⋅ + ⋅ ⋅ −



 +

⋅ −

+ ⋅ − ⋅ − − 

	 Ig = 58799·in.4

The negative cracking moment is
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M :

f I
d

318 kip ftcrNeg
r g

g
=

⋅
= ⋅ ⋅

The positive cracking moment is

	
M :

f I
h d

149 kip ftcrPos
r g

g
=

⋅
−

= ⋅ ⋅

Cracked moment of inertia: The cracked moment of inertia, Icr, is com-
puted per Equation (8-11) of ACI 440.1R-06 at the following locations.

Case 1—�Exterior support (includes presence of bends)

	
I :

b d
3

k n A d 1 k = 4122 incr1
w f1

3

1new
3

f f1new f1
2

1new
2 4( )=

⋅ + ⋅ ⋅ ⋅ − ⋅

Case 2—Midspan

	
I :

b d
3

k +n A d 1 k = 4261 incr2
w f2

3

2
3

f f2 f2
2

2
2 4( )=

⋅ ⋅ ⋅ ⋅ − ⋅

Case 3—Interior support

	
I :

b d
3

k + n A d 1 k = 4991 incr3
w f3

3

3
3

f f3 f3
2

3
2 4( )=

⋅ ⋅ ⋅ ⋅ − ⋅

Reduction coefficients (modified Branson’s method of ACI 440.1R-06):

Case 1—Exterior support

The reduction coefficient related to the reduced tension stiffening exhibited 
in the FRP reinforced members, computed per Equation (8-13b) of ACI 
440.1R is

	
:

1
5

=0.137d1
f1

fb1

β = ⋅ ρ
ρ







Case 2—Midspan

	
:

1
5

=0.131d2
f2

fb2

β = ⋅ ρ
ρ






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Case 3—Interior support

	
:

1
5

=0.342d3
f3

fb3

β = ⋅ ρ
ρ







Average effective moment of inertia (modified Branson’s method of ACI 
440.1R-06): The bending moment at midspan due to service loads is

	 MsPos = Ms2 = 202·kip·ft

The bending moment at the continuous end due to service loads is

	 MsNeg := Ms3 = 263·kip·ft

The value of Ie_Br at midspan is

	

I :
M
M

I + 1
M
M

I =5647 ine_Br2
crPos

sPos

3

d2 g
crPos

sPos

3

cr2
4=







β ⋅ − 

















⋅

The value of Ie_Br at the continuous end is

	

I :
M
M

I + 1
M
M

I =31657 ine_Br3
crNeg

sNeg

3

d3 g
crNeg

sNeg

3

cr3
4=







β ⋅ −


















⋅

The average effective moment of inertia, Ie_Br, is computed as indicated 
in Section 9.5.2.4 of ACI 318. The average value of Ie_Br is

	 Ie_Br := 0.85·Ie_Br2 + 0.15·Ie_Br3 = 9549·in.4

Deflection at midspan (modified Branson’s method of ACI 440.1R-06): 
Calculate the moment at midspan due to service load on a simply supported 
beam, Mo:

	
M :

w 1
8

=405.412 ft kipo
SPos 1

2

=
⋅ ⋅ ⋅

The maximum deflection under service loads is

	
:

5M 1
48E I

M +M
1

16E I
=0.69 in.SL_Br

o 1
2

c e_Br
s1 s3

1
2

c e_Br
( )∆ =

⋅
⋅

− ⋅
⋅

⋅

Deflection due to dead loads only is

	
:

w
w

=0.442 in.DL_Br SL_Br
D

SPos
∆ = ∆ ⋅ ⋅
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Deflection due to live loads only is

	
:

w
w

=0.248 in.LL_Br SL_Br
LPos

SPos
∆ = ∆ ⋅ ⋅

The multiplier for time-dependent deflection at 5 years (ACI 318-11) is

	 ξ := 2

The reduction parameter, Equation (8-14b) of ACI 440.1R-06, is

	 λ := 0.60ξ = 1.2

	 ΔLT_Br := ΔLL_Br + λ·(ΔDL_Br + 0.20·ΔLL_Br) = 0.838 in long-term deflection

	

Check_ :
“OK” if

“Not good” otherwise
LT_Br

LT_Br lim∆ =
∆ ≤ ∆

	 Check_ΔLT_Br = “OK”

Average effective moment of inertia [2]: The value of Ie at midspan is 
computed as follows according to the procedure defined by Bischoff [2] and 
discussed in Chapter 4. The ratio between the cracking moment and the 
applied moment is smaller than 1.0:

	
=M

M
0.74crPos

sPos

	
: 1.72 0.72

M
M

=1.187Bischoff2
crPos

sPos
γ = − ⋅ 





	

I :
I

1
M
M

1
I
I

=10749 ine2
cr2

Bischoff2
crPos

sPos

2
cr2

g

4=
− γ ⋅ 





⋅ −






⋅

The value of Ie at the continuous end is taken equal to the gross moment 
of inertia because the ratio between the cracking moment and the applied 
moment is larger than 1.0:

	
=

M
M

1.208crNeg

sNeg

	 Ie3 := Ig = 58799·in.4

The average value of Ie is

	 Ie := 0.85·Ie2 + 0.15·Ie3 = 17956·in.4
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Deflection at midspan [2]: Calculate the moment at midspan due to ser-
vice load on a simply supported beam, Mo:

	 Mo = 405.4·ft·kip

The maximum deflection under service loads is ξ = 2 and λ = 1.2. 
Maximum deflection under service loads is

	
:

5 M 1
48E I

M +M
1

16E I
=0.367 in.SL

o 1
2

c e
s1 s3

1
2

c e
( )∆ =

⋅ ⋅
⋅

− ⋅
⋅

⋅

Deflection due to dead loads only is

	
:

w
w

=0.235 in.DL SL
SPos

D∆ = ∆ ⋅ ⋅

Deflection due to live loads only is

	
:

w
w

=0.132 in.LL SL
LPos

SPos
∆ = ∆ ⋅ ⋅

Long-term deflection is

	 ΔLT := ΔLL + λ·(ΔDL + 0.20·ΔLL) = 0.446·in.

	

Check_ :
“OK” if

“Not good” otherwise
LT

LT lim∆ =
≤ ∆ ≤ ∆

	 Check_ΔLT = “OK”

Midspan deflection diagram [2] and ACI 440.1R–06:

0 6 12 18 24 30
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Bischoff's long term deflections
Dead load deflections
Live load deflections
ACI 440 long term deflections
Deflection limit

Beam B1, ft

M
id

-S
pa

n 
D

efl
ec

tio
n,

 in
.
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7.10 � STEP 8—DESIGN FRP REINFORCEMENT 
FOR SHEAR CAPACITY

Preliminary calculations: The maximum shear values at the face of the 
external and internal supports and midspan are

Vu1 = 62·kip	 Vu2 = 10.2·kip	 Vu3 = 72·kip

The concrete shear capacity, Vc, can be calculated per Equation (9-1) of 
ACI 440.1R-06, where k is the ratio of depth of neutral axis to reinforce-
ment depth, calculated per Equation (8-12). As discussed in Chapter 4, Vc 
minimum value of 0.8 f b dc f′ ⋅  is not applicable here.

The shear strength-reduction factor is

	 ϕv := 0.75

The concrete shear capacity at the exterior support is

	 k1new = 0.189

	 df1 = 26·in.

	
V : 5 f psib k d =26.7 kipc1 c w 1new f1( )= ′ ⋅ ⋅ ⋅ ⋅

Check_ShearReinf1 : “OK.Noshear reinforcement isneeded.”if
V
2

V

“Shear reinforcement is needed” otherwise

v
c1

u1= φ ⋅ ≥

	 Check_ShearReinf1 = “Shear reinforcement is needed”

The concrete shear capacity at the interior support is

	 k3 = 0.209

	 df3 = 26·in.

	
V : 5 f psib k d = 29.4 kipc3 c w 3 f3( )= ′ ⋅ ⋅ ⋅

Check_ShearReinf3 :
“OK.Noshear reinforcement isneeded.”if

V
2

V

“Shear reinforcement is needed” otherwise

v
c3

u3
=

φ ⋅ ≥

	 Check_ShearReinf3 = “Shear reinforcement is needed”
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Shear diagram

0 6 12 18 24 30

Beam AB-3, ft

Vu3 = 62.kip

Select the GFRP reinforcement
Stirrup_Size :=

#2
#3

#5
#6
#7
#8
#9
#10

#4

–Vu3 = –72.kip

The ACI 440.6 minimum manufacturer’s guaranteed mechanical prop-
erties of the selected bars are

ffuuv = 100·ksi	 Ultimate guaranteed tensile strength of the FRP
εfuuv = 0.018	 Ultimate guaranteed rupture strain of the FRP
Ef = 5700·ksi	 Guaranteed tensile modulus of elasticity of the FRP

The geometrical properties of the selected bars are

ϕf_stirrup = 0.5·in.	 Bar diameter
Af_stirrup = 0.196·in.2	 Bar area
rbsv := 3ϕf_stirrup = 1.5·in.	 Radius of the bend

The tail of the stirrup is to be at least 12 bar diameters:

	 1vtail := 12·ϕf_stirrup = 6·in.

The design tensile strength of the bend of FRP bar is

f : 0.05
r

+0.3 f =28.8 ksi Equation (7-3) of ACI 440.1R-06fbsv
bsv

f_stirrup
fu= ⋅

φ






⋅
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The stress level in the shear reinforcement is limited by Equation (9-3) of 
ACI 440.1R-06:

f :
(0.004 E ) if 0.004 E f Equation (9-3) of ACI 440.1R-06:

f otherwise

f 22.8 ksi

fv
f f fbsv

fbsv

fv

=
⋅ ⋅ ≤

= ⋅

The area of the two-leg stirrup is

	 Afv := 2·Af_stirrup = 0.393·in.2

FRP shear reinforcement at interior support (same reinforcement is used 
for the exterior support): The maximum stirrup spacing, Ssv, is (Equation 
9-4 of ACI 440.1R-06):

	
s :

A f d
V V

= 3.52 in.sv3_max
fv v fv f3

u3 v c3
=

⋅φ ⋅ ⋅
− φ ⋅

⋅

The selected spacing is

	 Ssv3 := 3 in.

The shear resistance provided by FRP stirrups, Vf, is

	
V :

A f d
s

=78 kip Equation (9-2) of ACI 440.1R-06f30
fv fv f3

sv3
=

⋅ ⋅ ⋅

As discussed in Chapter 4, Vf cannot exceed 3Vc:

	 3Vc3 = 88·kip

	 Vf3 := min(Vf30,3Vc3) = 78·kip

The nominal shear capacity, Vn, is

	 Vn3:= Vc3 + Vf3 = 107·kip

	 ϕv·Vn3 = 80·kip

Check_Shear3 :
“OK” if V V (V = 71.7kip)

“Not good” otherwise
v n3 u3 u3=

φ ≥

	 Check_Shear3 = “OK”
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The maximum stirrup spacing is 24 in. or d/2:

	
s : min 24in,

d
2

=13 in.svmax
f3= 





⋅

	

Check_Spacing : “OK”if s s ^s s

“Not good!” otherwise
sv3_ max sv3 svmax sv3= ≥ ≥

	 Check_Spacing = “OK”

FRP shear reinforcement at midspan: When the maximum spacing is 
used, the shear resistance provided by FRP stirrups, Vf, is

	 ssvmax = 13 in.

		
V :

A f d
s

=18 kip Equation (9-2) of ACI 440.1R-06fmin
fv fv f2

svmax
=

⋅ ⋅ ⋅

	
V : 5 f psib k d =19 kipc2 c w 2 f2( )= ′ ⋅ ⋅ ⋅ ⋅

The nominal shear capacity, Vn, is

	 Vn2 := Vc2 + Vfmin = 37·kip

	 ϕv·Vn2 = 28·kip

	

Check_Shear2 :
“OK” if V V (V =10.2 kip)

“Not good” otherwise
v n2 u2 u2=

φ ⋅ ≥ ⋅

	 Check_Shear2 = “OK”

The FRP stirrups are placed at the maximum spacing in the center part 
of the span over a length that extends for

	 lmin_shear := 0.25·l1 = 7.5·ft
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φv.Vn3 = 80.kip

φv.Vn2 = 28.kip

0 6 12 18 24 30

Vu1 = 62.kip

Beam AB-3, ft

–Vu3 = –72.kip

7.11 � STEP 9—COMPUTE FRP CONTRIBUTION 
TO TORSIONAL STRENGTH

In this section, an attempt is made to discuss how to compute the contribu-
tion to the torsional strength provided by the FRP lateral reinforcement and 
close FRP stirrups.

Preliminary calculations: The area enclosed by centerline of the outer-
most closed transverse torsional reinforcement is

	
A : b 2c 2

2
h 2c 2

2
=257 inoh w c

f_stirrup
c

f_stirrup 2= − −
φ





⋅ − −
φ





⋅

Perimeter of centerline of outermost closed transverse torsional rein-
forcement is

	
p : 2 b 2c 2

2
2 h 2c 2

2
=70 in.h w c

f_stirrup
c

f_stirrup= ⋅ − −
φ





+ ⋅ − −
φ





⋅

Area enclosed by outside perimeter of concrete cross section is

	 Acp := beff·tslab + bw·(h – tslab) = 792·in.2

Outside perimeter of concrete cross section is

	 Pcp := 2beff + 2·tslab + 2·(h – tslab) = 184·in.

Gross sectional area is

	 Ag := beff·tslab + bw·(h – tslab) = 792·in.2
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•	 Compatibility torsion—ACI 318-11, Section 11.6.2:

	
T : 4 f psi

A
p

= 66 kip ftcr v c
cp
2

cp
= φ ⋅ ⋅ ′ ⋅ ⋅







⋅ ⋅

•	 Threshold torsion—ACI 318-11, Section 11.6.1:

	
T : f psi

A
p

=17 kip fttr v c
cp
2

cp
= φ ⋅ ′ ⋅ ⋅







⋅ ⋅

•	 FRP reinforcement contribution to torsional strength—following ACI 
318-11, Equation (11-21):
The angle of the torsional cracks is taken equal to 45°:

	 θ := 45° = 0.785

The cross-sectional area resisting to torsion can be computed as

	 Ao := 0.85·Aoh = 219·in.2

The area of the FRP reinforcement resisting to torsion is

	 At := Af_stirrup = 0.196·in.2

The spacing of the FRP torsional reinforcement is

	 sst := ssv3 = 3·in.

Provided that closed FRP stirrups are used, the FRP contribution to resist 
torsion could be computed as follows:

	
T :

2A A f
s

cot( )=54 kip ftn
o t fv

st
=

⋅ ⋅ θ ⋅ ⋅

•	 Limitation on cross section: ACI 318-11, Section 11.6.3.1:
The following ACI 318-11 limitation to the cross-section geometry 

should be satisfied:

	

max
V

b d
+

T p
1.7 A

max
V

b d
+8 f psiu1

w1 1

2
u h

oh
2

2
c1

w1 1
c⋅













⋅
⋅







≤ φ ⋅
⋅







⋅ ′ ⋅





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Chapter 8

Design of a two-way slab

8.1  INTRODUCTION

The floor plan of a two-story medical facility building is shown in 
Figure 8.1. The column spacing is dictated by the size of the equipment 
that occupies the ground floor. The second-floor system is a two-way rein-
forced concrete (RC) slab with each panel supported by perimeter beams. 
The building is located in a region of low seismicity. Loading of each floor 
consists of the self-weight, a superimposed dead load of 2.5 psf, and a live 
load of 100 psf.

This example describes the procedure to design the two-way slab of the 
second floor. The design is presented as a sequence of eight steps as sum-
marized here:

Step 1	 Define slab geometry and concrete properties
Step 2	 Compute factored loads
Step 3	� Compute ultimate and service bending moments and shear 

forces
Step 4	� Design FRP reinforcement for bending moment capacity (with 

shear check)
Step 5	 Check creep-rupture stress
Step 6	 Check crack width
Step 7	 Check maximum midspan deflection
Step 8	 Check for punching shear (no perimeter beams)

Because of the symmetry, the design refers to the panel included between 
gridlines A, B, 1, and 2 (Figure 8.1). The results of the design are sum-
marized next to facilitate the understanding of the eight sequential steps 
devoted to calculations.
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8.2  DESIGN SUMMARY

Based on a slab thickness of 8 in., the following loads are considered:

Slab self-weight	 96.7 psf
Superimposed dead load	 2.5 psf
Live load	 100 psf
Total factored load	 279 psf	 (0.279 kip/ft)
Service load	 199 psf	 (0.199 kip/ft)

Bending moments and shear forces per unit strip are computed for the 
column and middle strips (see Figure  8.2). A commercial finite element 
modeling software was used to compute bending moment and shear forces 
for the various strips as summarized in Table 8.1. Because of the symmetry, 
only the forces in one direction are shown.
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Figure 8.2 � Column and middle strips relative to the design panel.
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24 ft 24 ft

24 ft

24 ft

Figure 8.1 � Floor plan.
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The required fiber-reinforced polymer (FRP) reinforcement for a slab 
thickness of 8 in. is summarized in Table 8.2.

Table 8.3 shows a summary of demands and capacities at critical sec-
tions. It should be noted that minimum shrinkage and temperature rein-
forcement provide sufficient flexural strength everywhere.

The final bar layout is selected to optimize bar production time and con-
struction effort.

Bar layout and typical details are shown in Figures 8.3(a) and 8.3(b).
Table 8.4 is provided to convert US customary units to the SI system.

Table 8.2  Slab geometry and reinforcement

Slab thickness Reinforcement

8 in. No. 4 @ 5 in.
(top and bottom and both directions)

Table 8.1  Bending moments and shear force

Section

Bending moment Shear force

Ultimate moment 
(kip-ft/ft)

Service moment 
(kip-ft/ft)

Ultimate shear 
(kip/ft)

Ext. col strip
Exterior support 2.79 2.00 1.19
Midspan 1.60 1.14 0.25
Interior support 5.09 3.64 1.83

Middle strip
Exterior support 1.91 3.12 1.91
Midspan 3.79 2.71 0.25
Interior support 7.51 5.37 2.35

Int. col strip
Exterior support 2.47 1.77 0.81
Midspan 1.45 1.04 0.23
Interior support 4.62 4.62 1.40

Table 8.3  Slab design summary

Limit state Section Demand/computed Capacity/limit

Ultimate

Interior 
support

Middle strip

Flexural strength 7.51 kip-ft/ft 12.5 kip-ft/ft
Shear strength 2.35 kip/ft 3.31 kip/ft

Serviceability
Creep rupture 13.1 ksi 16 ksi
Crack width 0.025 in. 0.028 in.

Maximum panel center deflection 0.232 in. 0.600 in.
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8.3 � STEP 1—DEFINE SLAB GEOMETRY 
AND CONCRETE PROPERTIES

8.3.1  Geometry

The two-way slab spans over two bays along both directions:

11:= 24 ft
12 := 24 ft

A clear top and bottom concrete cover, cc, is

cc := 0.75 in.

The width of the perimeter beams is

bbeam := 14 in.

Table 8.4  Conversion table

US customary SI units

Lengths, areas, section properties

1 in. 25.4 mm
0.025 m

1 ft 304.8 mm
0.305 m

1 in.2 645 mm2

1 ft2 0.093 m2

1 in.3 16,387 mm3

1 in.4 416,231 mm4

Forces, pressures, strengths

1 lbf 4.448 N
1 kip 4.448 kN
1 lbf-ft 1.356 N⋅m
1 kip-ft 1.356 kN⋅m
1 psi 6.895 kPa
1 psf 47.88 N/m2

1 ksi 6.895 MPa
1 ksf 47.88 kN/m2

1 lbf/ft3 157.1 N/m3
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8.3.2  Concrete properties

The following concrete properties are considered for the design:

f ′c := 5000 psi	 Compressive strength

εcu := 0.003	 Ultimate compressive strain

: 145
1bf
ft3cρ = 	 Density

E : 33 psi
1bf ft

fc
0.5 c

3

1.5

c= ρ
⋅







 ⋅ ′−

	 Compressive modulus of elasticity

Ec = 4074·ksi	 Computed as indicated in ACI 318-11

f : 7.5 psi fct
0.5

c= ⋅ ′ 	 Concrete tensile strength

fct = 530·psi	 Computed as indicated in ACI 318-11

The stress-block factor, β1, is computed as indicated in ACI 318-11:

	 β =

′ =

− ⋅ ′ ′ <:

0.85 if f 4000 psi

1.05 0.05
f

1000 psi
if 4000 psi <f 8000psi =0.8

0.65 otherwise

1

c

c
c

8.3.3 � Analytical approximations of 
concrete compressive stress–strain 
curve—Todeschini’s model

Compressive strain at peak:

	
:

1.71 f
E

=0.0021c0
c

c
ε = ⋅ ′

Compressive stress at peak:

	 σ = ⋅" : 0.9
f"
psi

c
c
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Stress–strain curve equation:

	 ( )σ ε =
⋅ σ ⋅ ε

ε






ε
ε







:
2 "

1+
c c

c
c

c0

c

c0

2

0 0.001 0.002 0.0030

2000

4000

Concrete Compressive Stress-Strain Curve

Strain, in./in.

St
re

ss
, p

si

8.4  STEP 2—COMPUTE THE FACTORED LOADS

As a first guess, the following slab thickness, tslab, was selected:

	 tslab := 8 in.

The self-weight of the slab is computed considering a concrete density of 
145 psf. Other dead loads such as floor cover (0.5 psf) and ceiling (2 psf) 
are considered. A live load of 100 psf was requested by the owner. The fol-
lowing unfactored uniform loads are considered:

SW := tslab∙ρc = 96.7∙psf	 Slab self-weight
OD := 2.5 psf	 Other dead loads
DL := SW + OD = 99.2∙psf	 Total dead load
LLo := 100 psf	 Live load

The governing load combination for computing the total factored load, 
TFL, is load combination Equation (9-2) defined in Section 9.2.1 of ACI 
318-11:

	 TFL := 1.2·DL + 1.6·LL = 279·psf
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The total service load, SL, is

	 SL := DL+LL = 199·psf

For the unit-width slab strip, the design loads per unit width are wu and 
ws, for ultimate and service limit state, respectively:

	 wu := TFL·1 ft = 279·plf

	 ws := SL·1 ft = 199·plf

8.5 � STEP 3—COMPUTE BENDING 
MOMENTS AND SHEAR FORCES

Bending moments and shear forces are determined using a commercial 
finite element analysis software. The results of the analysis relative to the 
panel for ultimate conditions are summarized as follows. Because of the 
symmetry, only the bending moments and the shear forces along one direc-
tion are considered:

Exterior column strip	 Middle strip	 Interior column strip

Vu11 := 7.14 kip	 Vu21 := 22.9 kip	 Vu31 := 9.67 kip

MuNeg11 := 16.7 kip·ft	 MuNeg21 := 52.4 kip·ft	 MuNeg31 := 29.6 kip·ft
Vu12 := 1.50 kip	 Vu22 := 3.05 kip	 Vu32 := 2.73 kip

MuPos12 := 9.60 kip·ft	 MuPos22 := 45.4 kip·ft	 MuPos32 := 17.4 kip·ft
Vu13 := 11.0 kip	 Vu23 := 28.2 kip	 Vu33 := 16.9 kip

MuNeg13 := 30.5 kip·ft	 MuNeg23 := 90.2 kip·ft	 MuNeg33 := 55.4 kip·ft

v : 1.19
kip
ft

u11 =
	

v : 1.19
kip
ft

u21 =
	

v : 0.81
kip
ft

u31 =

m : 2.79
kip ft

ft
uNeg11 = ⋅ ⋅

	
m : 4.36

kip ft
ft

uNeg21 = ⋅ ⋅
	

= ⋅ ⋅
m : 2.47

kip ft
ft

uNeg31

v : 0.25
kip
ft

u12 =
	

v : 0.25
kip
ft

u22 =
	

v : 0.23
kip
ft

u32 =

m : 1.60
kip ft

ft
uPos12 = ⋅

	
m : 3.79

kip ft
ft

uPos22 = ⋅
	

m : 1.45
kip ft

ft
uPos32 = ⋅

v : 1.83
kip
ft

u13 =
	

v : 2.35
kip
ft

u23 =
	

v : 1.40
kip
ft

u33 =
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m : 5.09
kip ft

ft
uNeg13 = ⋅ ⋅

	
m : 7.51

kip ft
ft

uNeg23 = ⋅ ⋅
	

= ⋅ ⋅
m : 4.62

kip ft
ft

uNeg33

The values of the service bending moments per linear foot are summarized 
next:

Exterior column strip	 Middle strip	 Interior column strip

m : 2.00
kip ft

ft
sNeg11 = ⋅ ⋅

	
m : 3.12

kip ft
ft

sNeg21 = ⋅
	

m : 1.77
kip ft

ft
sNeg31 = ⋅

m : 1.14
kip ft

ft
sPos12 = ⋅

	
m : 2.71

kip ft
ft

sPos22 = ⋅
	

m : 1.04
kip ft

ft
sPos32 = ⋅

m : 3.64
kip ft

ft
sNeg13 = ⋅

	
m : 5.37

kip ft
ft

sNeg23 = ⋅
	

m : 4.62
kip ft

ft
sNeg33 = ⋅

8.6 � STEP 4—DESIGN FRP REINFORCEMENT 
FOR BENDING MOMENT CAPACITY

Type_of_Fiber :=
Glass
Carbon

Bar_Size :=
#2
#3
#4
#5
#6
#7
#8
#9
#10

Select the FRP reinforcement: For the purpose of this design example, it is 
assumed that glass FRP (GFRP) bars of the same size are used everywhere 
in the slab.

The ACI 440.6 minimum manufacturer’s guaranteed mechanical prop-
erties of the selected bars are

ffuu = 100·ksi	 Ultimate guaranteed tensile strength of the FRP
εfuu = 0.018	 Ultimate guaranteed rupture strain of the FRP
Ef = 5700·ksi	 Guaranteed tensile modulus of elasticity of the FRP 
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The geometrical properties of the selected bars are the following:

ϕf_bar = 0.5·in.	 Bar diameter
Af_bar = 0.196·in.2	 Bar area

FRP reduction factors: Table  7-1 of ACI 440.1R-06 is used to define 
the environmental reduction factor, CE. The type of exposure has to be 
selected:

Type_of_Exposure :=
Interior
Exterior

CE = 0.8	 Environmental reduction factor for GFRP

Table 8-3 in ACI 440.1R-06 is used to define the reduction factor to take 
into account the FRP creep-rupture stress. Creep-rupture stress in the FRP 
has to be evaluated considering the total unfactored dead loads and the 
sustained portion of the live load (20% of the total live load):

kcreep = 0.2	 Creep-rupture stress limitation factor

Crack width is checked using Equation (8-9) of ACI 440.1R-06. A crack 
width limit, wlim, of 0.028 in. is used for interior exposure, while 0.020 in. 
is used for exterior exposure:

wlim = 0.028 in.	 Crack width limit

FRP ultimate design properties: The ultimate design properties are cal-
culated per Section 7.2 of ACI 440.1R-06:

ffu := CE∙ffuu = 80∙ksi	 Design tensile strength
εfu = CE∙εfuu = 0.014	 Design rupture strain

FRP creep-rupture limit stress: The FRP creep-rupture limit stress is cal-
culated per Section 8.4 of ACI 440.1R-06:

	 ff_creep := kcreep·ffu = 16·ksi
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8.6.1  Thickness control

One-way shear strength is generally a controlling factor in determining the 
thickness of a two-way slab with perimeter beams inasmuch as the rein-
forcing level is normally close to minimum. The effective depths of the FRP 
reinforcement along the two directions, df1 and df2, are

	 = − − φ = ⋅d : t c
2

7 inf1 slab c
f_bar .

	 = − − ⋅φ = ⋅d : t c
3

2
6.5 inf2 slab c

f_bar .

The maximum value of shear force per unit width, vuMax, is the 
following:

	 v :=v =2.35
kip
ft

uMax u23 ⋅

The shear strength of the slab per unit width, ϕVc, can be computed as 
follows. It is assumed that, for the cracked transformed section, the ratio of 
depth of neutral axis to reinforcement depth, k, is 0.16:

	 k := 0.16

The concrete one-way shear capacity per unit width, Vc, can be calcu-
lated per Equation (9-1) of ACI 440.1R-06 with k = 0.16. This means that 
its minimum value is 0.8 f bdc′  per Chapter 4:

	 V :=
5
2

k 2 f psi 1ft min d ,d =4.412 kipc0 c f1 f2( ) ( )



 ⋅ ′ ⋅ ⋅ ⋅ ⋅

The shear reduction factor given by ACI 440.1R-06 is adopted:

	 ϕv := 0.75

	 ϕv·Vc0 = 3.31·kip

	 =
φ ⋅ ≥ ⋅

CheckThickness :
“OK”if V v 1ft

“Inadequate shear strength” otherwise

v c0 uMax

	 CheckThickness = “OK”
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8.6.2 � Temperature and shrinkage 
FRP reinforcement

A simple method of designing the reinforcement for two-way slabs is 
to reinforce the slab with a uniform mesh equal to what is required for 
shrinkage and temperature (ρf,ts), and then add extra bars at sections that 
might be deficient. The minimum flexural reinforcement can be calcu-
lated as

	 := 0.0018
60ksi

f
29000ksi

E
,0.0036 = 0.0036f_tsMin

fu f

ρ ⋅ ⋅





The minimum FRP area per unit width is

	 A := t =0.346
in
ftf_tsMin f_tsMin slab

2

ρ ⋅ ⋅

The selected spacing of the FRP bars is

	 sf_ts := 5 in.

The spacing also satisfies the crack width limitation; see Step 6.
The selected area of FRP temperature and shrinkage reinforcement per 

unit width is

	 A :=
A
s

0.471
in
ft

f
f_bar

f_ts

2

= ⋅

No. 4 GFRP bars spaced 5 in. center to center in both directions are 
considered.

Minimum FRP reinforcement: The minimum reinforcement require-
ment has to be verified. Equation (8-8) of ACI 440.1R-06 is used. If the 
failure is not governed by FRP rupture, this requirement is automatically 
achieved:

	 ( ) ( )⋅ ′







 ⋅A := min

4.9 f psi

f
min d ,d ,

300psi
f

min d ,d =0.292
in
ft

f_min1
c

fu
f1 2

fu
f1 f2

2

	
≥ ⋅





Check_MinReinf1 :=

“OK” if A A A =0.471
in
ft

“Not satisfied” otherwise

f f_min1 f

2

	 Check_MinReinf1 = “OK”
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8.6.3  Bending moment capacity

The maximum value of bending moment per unit width, muMax, (middle 
strip, interior support) is the following:

	 m :=m =7.51
kip ft

ft
uMax uNeg23 ⋅ ⋅

The FRP reinforcement ratio, ρf, is (Equation 8-2 of ACI 440.1R-06):

	 :=
A

min d ,d
=0.006042f

f

f1 f2( )ρ

The failure mode depends on the amount of FRP reinforcement. If ρf is 
larger than the balanced reinforcement ratio, ρfb, then concrete crushing is 
the failure mode. If ρf is smaller than the balanced reinforcement ratio, ρfb, 
then FRP rupture is the failure mode.

ρfb is computed per Equation (8-3) of ACI 440.1R-06:

	 :=0.85
f
f

E
E +f

=0.00748fb 1
c

fu

f cu

f cu fu

ρ β ⋅ ′ ⋅ ⋅ ε
⋅ ε

The effective concrete compressive strain at failure as a function of the 
neutral axis depth, x, is

	 ( )ε

ε ⋅ ρ ≥ ρ

ε
−

⋅ ρ ρ
x,y :=

x
y if

d x
y if <

c

cu
f fb

fu

f2
f fb

The effective tensile strain in the FRP reinforcement as a function of the 
neutral axis depth, x, is

	
( )

ε

ε ρ < ρ

ε ⋅ − ε





ρ ≥ ρ
(x):=

if

min
x

d x , if
f

fu f fb

cu
f2 fu f fb

The compressive force in the concrete as a function of the neutral axis 
depth, x, is
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C (x):
2 "

(x,y)

1+
(x,y)

psidyc

c
c

c0

c

c0

2
0in

x

∫=
σ ⋅ ε

ε






ε
ε







The tensile force in the first layer of FRP reinforcement as a function of 
the neutral axis depth, x, is

	 Tf(x) := Af·Ef·εf(x)

The neutral axis depth, cu, can be computed by solving the equation of 
equilibrium Cc – Tf = 0:
First guess:

	 x0 := 0.1 min(df1,df2)

Given:

	 f0(x) := Cc(x) – Tf(x)

	 Cu := root(f0(x0),x0)

The neutral axis depth is

	 cu = 0.953·in.

The nominal bending moment capacity per unit width can be computed 
as follows:

m := y

2 "
c ,y

1+
c ,y

psi dy + T c min d ,d c =19
ft kip

ft
n

c
c u

c0

c u

c0

2
0

c

f u f1 f2 u

u

∫ ( )( )
( )

( )
( )⋅

⋅ σ ⋅
ε

ε







ε
ε



















⋅ − ⋅ ⋅

The strain distribution over the cross section is shown next.
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min(df1, df2) = 6.5in

εfu = 0.014

εf(cu) = 0.014

εcu = 0.003

εc(cu, cu) = 0.00241

Af

8.6.4 � Flexural strength with newly 
proposed ϕ-factors

The φ-factor is calculated according to Jawahery and Nanni [1]:

	

( )

( )

( )

φ =

−
ε

ε
≤

−
ε

ε
≥

−
ε

ε

:

0.65 if 1.15
c

2
0.65=0.65

0.75 if 1.15
c

2
0.75

1.15
c

2
otherwise

b

f u

fu

f u

fu

f u

fu

The design flexural strength is computed per Equation (8-1) of ACI 
440.1R-06:

	
m =12.5

kip ft
ftb nφ ⋅ ⋅

	

=
φ ⋅ ≥ ⋅ ⋅



Check_Flexure:

“OK” if m m m =7.5
kip ft

ft

“Not good” otherwise

b n uMax uMax

	 Check_Flexure = “OK”
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Flexural strength computed per ACI 440.1R-06: The tensile stress 
in the GFRP is computed per Equation (8-4c) when ρf > ρfb, or is ffu if 
ρf < ρfb:

f :=
E

4
+

0.85 f
E 0.5E if = 80 ksi (f =80ksi)

f otherwise

f

f cu
2

1 c

f
f cu f cu f fb fu

fu

( )⋅ ε β ⋅ ′
ρ

⋅ ε − ⋅ ε ρ ≥ ρ ⋅

ff cannot exceed ffu; therefore, the following has to be checked:

	

=
≤

CheckMaxStress :
“OK” if f f

“Reduce bar spacing or increase bar size”otherwise

f fu

	 CheckMaxStress = “OK”

The stress-block depth is computed per Equation (8-4b) or Equation 
(8-6c) depending on whether ρf > ρfb or ρf < ρfb, respectively.

a :

A f
0.85 f

if Equation (8-4b)of ACI440.1R-06

min(d ,d ) other Equation(8-6c)of ACI440.1R-06

f

f f

c
f fb

1
cu

cu fu
f1 f2

=

⋅
′

ρ ≥ ρ

β ⋅ ε
ε + ε

















	 af = 0.916·in.

	
c :=

a
=1.145 in Neutral axis depthf

f

1β
⋅

The nominal moment capacity is

	
m :=A f min d ,d

a
2

=19
ft kip

ft
nACI f f f1 f2

f( )⋅ −



 ⋅ ⋅
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The concrete crushing failure mode is less brittle than the one due to 
GFRP rupture. The φ-factor is computed according to Equation (8-7) of 
ACI 440.1R-06:

	

0.55 if =0.55

0.30+0.25 if < <1.4

0.65 otherwise

bACI

f fb

f

fb
fb f fbφ

ρ ≤ ρ

⋅ ρ
ρ

ρ ρ ⋅ρ

The design flexural strength equation is computed per Equation (8-1) of 
ACI 440.1R-06:

	

( )φ ⋅ ⋅
⋅

m =10
kip ft

ftbACI nACI

	

Check_FlexureACI:=

“OK” if m m

(m =7.5
kip ft

ft
)

“Not good” otherwise

bACI nACI uMax

uMax

φ ⋅ ≥

⋅ ⋅

	 Check_FlexureACI = “OK”

8.6.5  Embedment length at exterior support

Because this is a case of negative reinforcement, it has to be checked if 
adequate moment capacity can be achieved at the end of the embedment 
length. The available length for embedment is

	 lemb := 12 in.

The developable tensile stress is calculated per Equation (11-3) of ACI 
440.1R-06:

Minimum between cover to bar center and half of the center-to-center 
bar spacing is

	 C :=min c +
2

,
s
2

=1 inb c
f_bar f_tsφ





⋅ .
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Bar location modification factor for top reinforcement with less than 
12 in. of concrete below it is

	 αNeg := 1.0

Required stress in the FRP is

	 ffr := Ef·εf(cu) 80·ksi

The developable tensile stress is (ACI 440.1R-06 Equation 11-3):

′ ⋅
α

⋅ ⋅
φ φ

⋅
φ

+






≥ ⋅

′ ⋅
α

⋅ ⋅
φ φ

⋅
φ



















f :=
f if

f psi
13.6

1
+

C 1
340 f =33.677 ksi

f psi
13.6

1
+

C 1
+340 otherwise

fd

fu
c

Neg

emb

f_bar

b

f_bar

emb

f_bar
fu

c

Neg

emb

f_bar

b

f_bar

emb

f_bar

	

CheckFailure:= “Bar ultimate strength”if f f

“Bond strength otherwise”
fd fr≥

	 CheckFailure = “Bond strength”

The cross section of interest is a bond-critical section. The nomi-
nal moment capacity, therefore, has to be computed per ACI 440.1R-06 
Equation (8-5) or ACI 440.1R-06 Equation (8-6b) when the failure mode is 
vconcrete crushing or bond, respectively:

	

m :

A f min d ,d
1
2

A f
0.85 f

if Check Failure=“Bold strength”

m if CheckFailure =“Bar ultimate strength”

nb

f fd f1 f2
f f

c

n

( )

=

⋅ ⋅ − ⋅ ⋅
⋅ ′



















	
m =8.11

ft kip
ftnb ⋅ ⋅

The maximum ultimate moment at the exterior support is

	 m :=4.36
ft kip

ft
uNegMax ⋅ ⋅
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The strength-reduction factor when failure is controlled by bond is

	

:=
0.55 if CheckFailure “Bond strength” =0.55

if CheckFailure “Bar ultimate strength”
b_bond

b

φ
=

φ =

The design flexural strength is, therefore,

	
m =4.46

ft kip
ftb_bond nbφ ⋅ ⋅ ⋅

	

Check_FlexureNeg:=
“OK” if m m

“Not good” otherwise

b_bond nb uNegMaxφ ⋅ ≥

	 Check_FlexureNeg = “OK”

The embedment length is adequate. If the embedment length had not 
been adequate, a bent bar could have been used as indicated in the 
following.

lemb = 12in
Bar = "#4"

Bent_Bar = “Not needed”

rb

ltail

lbhf

bbeam = 14in
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8.6.6 � Development length for positive 
moment reinforcement

The development length, ld, for straight bars can be calculated using 
Equation (11-3) of ACI 440.1R-06:

Minimum between cover to bar center and half of the center-to-center 
bar spacing is

	 C :=min c +
2

,
s
2

=1 inb2 c
f_bar f_tsφ





⋅ .

Bar location modification factor for bottom reinforcement is

	 αPos := 1

The minimum development length is computed according to ACI 440.1R-
06 Equation 11-6:

	

1 :=

f
f psi

340

13.6+
C 25.364 ind_min

Pos
fu

c

b2

f_bar

f_bar

α ⋅
′ ⋅

−

φ

φ = ⋅

The following development length is considered and provided to develop 
the required moment capacity:

	 ld := 26 in.

8.6.7  Tension lap splice

The recommended development length of FRP tension lap splices is 1.3ld 
(Section 11.4 of ACI 440.1R-06). The minimum recommended tension lap 
splice development length is as shown:

	 1.3ld = 33.8·in.

Tension lap splices 34 in. in length are provided if necessary.

8.6.8  Special reinforcement at corners

At exterior corners, top and bottom reinforcement must resist the existing 
moment plus the maximum positive moment per unit width of the slab:

	 m :=m +max m ,m ,m = 6.58
kip ft

ft
uTopMax uNeg11 uPos12 uPos22 uPos32( ) ⋅
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No. 4 GFRP bars spaced 5 in. center to center in both directions are 
considered.

	

Check:=

“No additional reinforcement at corner is required”

if m m

“Additional reinforcement at corner is required” otherwise

uTopmax b n≤ φ ⋅

	 Check = “No additional reinforcement at corner is required”

8.6.9  Check for shear capacity

The maximum shear at the face of the supports is

	 Vu := vuMax·(1 ft) = 2.35·kip

The concrete shear capacity, Vc, can be calculated per Equation (9-1) of 
ACI 440.1R-06, where k is the ratio of depth of neutral axis to reinforce-
ment depth, calculated per Equation (8-12). Also, the limitation discussed 
in Chapter 4 should be verified (V >0.8 f b d)c ci′ ⋅ :

	 V :=max
5 f psi 1ft k min d ,d ,

0.8 f psi 1ft min d ,d
= 4.4 kipc

c f1 f2

c f1 f2

( )
( )

( ) ( )

( ) ( )

′ ⋅ ⋅ ⋅ ⋅

′ ⋅ ⋅

















⋅

The shear reduction factor given by ACI 440.1R-06 is adopted:

	 φv = 0.75

	 φv·Vc = 3.31·kip

	

Check_Shear1:
“OK” if V V

“Shear reinforcement is needed” otherwise

v c uφ ⋅ ≥

	 Check_Shear 1 = “OK”

8.7  STEP 5—CHECK CREEP-RUPTURE STRESS

Creep-rupture stress in the FRP has to be evaluated considering the total 
unfactored dead loads and the sustained portion of the live load (20% of 
the total live load). The maximum value of bending moment per unit width, 
muMax, is the following:

	 m :=m =5.37
kip ft

ft
sMax sNeg23 ⋅ ⋅
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Bending moment due to dead load plus 20% of live load is

	
m :=m

DL+0.20LL
SL

=3.2
kip ft

ft
creep sMax ⋅ ⋅ ⋅

Ratio of modulus of elasticity of bars to modulus of elasticity of concrete is

	
n :=

E
E

= 1.399f
f

c

Ratio of depth of neutral axis to reinforcement depth, calculated per 
Equation (8-12), is

	
k := 2 n + n n =0.122f f f f f

2
f f( )ρ ⋅ ρ ⋅ − ρ ⋅

The tensile stress in the FRP is computed as

	

f :=
m

A min d ,d 1
k
3

=13.1 ksifcreep
creep

f f1 f2
f( )⋅ ⋅ −





⋅

	

Check_Creep:
“OK” if f f (f =16 ksi)

“Not good” otherwise

fcreep f_creep f_creep
=

≤ ⋅

	 Check_Creep = “OK”

Af

εf2_creep = 0.0023

df2 = 6.5·in
kcreep·εfu = 0.00281
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8.8  STEP 6—CHECK CRACK WIDTH

Crack width is checked using Equation (8-9) of ACI 440.1R-06. A crack 
width limit, wlim, of 0.028 in. is used for interior exposure, while 0.020 
in. is used for exterior exposure. The middle strip interior support is 
considered.

Ratio of modulus of elasticity of bars to modulus of elasticity of concrete is

	 nf = 1.399

Ratio of depth of neutral axis to reinforcement depth, calculated per 
Equation (8-12), is

	 kf = 0.122

Tensile stress in GFRP under service loads is

	

f :
m

A min d ,d 1
k
3

= 21.928 ksifs
sMax

f f1 f
f

2( )
=

⋅ ⋅ −





⋅

Ratio of distance from neutral axis to extreme tension fiber to distance 
from neutral axis to center of tensile reinforcement is

	
:=

t k min d ,d
min d ,d 1 k

=1.26311
slab f f1 f2

f1 f2 f

( )
( ) ( )β
− ⋅

⋅ −

Thickness of concrete cover measured from extreme tension fiber to cen-
ter of bar is

	 dc := tslab – min(df1,df2) = 1.5·in.

Bond factor (provided by the manufacturer) is

	 Kb := 0.9

The crack width under service loads is

	
w: 2

f
E

k d +
s
2

= 0.025 in Equation (8-9) of ACI 440.1R-06fs

f
11 b c

2 f_ts
2

= β ⋅ ⋅






 ⋅

The crack width limit for the selected exposure is

	 wlim = 0.028·in.
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	 Check_Crack1:=
“OK” if w w

“Not good” otherwise
lim≤

	 Check_Crack1 = “OK”

8.9  STEP 7—CHECK DEFLECTIONS

Maximum long-term midspan deflection is checked. The maximum allow-
able deflection is l/480.

The gross moment of inertia is

	
I :=

1ft t
12

= 512 ing
slab
3

4( ) ⋅
⋅

The cracking moment is

	
M :=

2f I
t

= 5.657 kip ftcr
ct g

slab

⋅
⋅ ⋅

The cracking moment per unit width is

	
m :=

2f I
t 12in

= 5.657
kip ft

ft
cr

ct g

slab ( )
⋅

⋅
⋅ ⋅

Because the service bending moments are smaller than the cracking 
moment, the section remains uncracked and the gross moment of inertia 
may be used to calculate the deflections.

From the finite element analysis the following results can be obtained:

ΔDL := 0.10 in.	 D�eflection due to dead 
loads only

ΔLL := 0.09 in.	 D�eflection due to live loads 
only

ξ := 2	 M�ultiplier for time-
dependent deflection at 
5 years (ACI 318-11)

λ := 0.60ξ = 1.2	 R�eduction parameter, 
Equation (8-14b) of ACI 
440.1R-06

ΔLT := ΔLL + λ·(ΔDL + 0.20·ΔLL) = 0.232·in.	 Long-term deflection

:=
1

480
=0.6 inlimit

1∆ ⋅ .	 Deflection limit
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	 Check_ :=
“OK” if

“Not good” otherwise
LT

LT limit
∆

∆ ≤ ∆

	 Check_ΔLT = “OK”

8.10 � STEP 8—CHECK FOR PUNCHING 
SHEAR (NO PERIMETER BEAMS)

Assuming that no slab-perimeter beams are present, the slab at columns 
A1, B1, and B2 are checked for punching shear. It is assumed that columns 
are square with sides equal to bcol := 20 in.

8.10.1  Check at column A1

The area of influence is

	 AI1:= (0.45.11)·(0.45·12) – bcol
2 = 113.862·ft2

The factored shear force is

	 Vu1 := AI1·TFL = 31.8·kip

The perimeter of critical section is

	 b :=2 b +
min d ,d

2
=46.5 in01 col

f1 f2( )





⋅ .

0.45ℓ

0.45ℓ

bcol+d/2

bcol+d/2

The ratio of modulus of elasticity of bars to modulus of elasticity of con-
crete is

	 nf = 1.399
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The ratio of depth of neutral axis to reinforcement depth, calculated per 
Equation (8-12) of ACI 440.1R-06, is

	 kf = 0.122

The concrete two-way capacity to resist punching shear is from Equation 
(9-8a) of ACI 440.1R-06:

	
V :=

5
2

k 4 f psi b min d ,d =26.04 kipc1 f c 01 f1 f2( ) ( )



 ⋅ ′ ⋅ ⋅ ⋅ ⋅

The concrete shear capacity per unit width, Vc, has a minimum value is 
1.6 f b dc o′  per Chapter 4; therefore:

	
V :=1.6 f psi b min d ,d =34.2 kipc1min c 01 f1 f2( ) ( )⋅ ′ ⋅ ⋅ ⋅ ⋅

	 ϕVn1 := ϕv·Vc1min = 25.647·kip

	

Check_PunchingShear1:=
“OK” if V V

“Not good” otherwise

u1 n1≤ φ

	 Check_PunchingShear1 = “Not good”

For example, including a drop panel at the corner columns could be a solu-
tion to prevent punching shear failure.

8.10.2  Check at column B1

The area of influence is

	 AI2 := (0.45·11)·(0.5·12) – bcol
2 = 126.822·ft2

The factored shear force is

	 Vu2 := AI2·TFL = 35.4·kip

The perimeter of critical section is

	 b :=2 b +
min d ,d

2
+ b +min d ,d =73 in02 col

f1 f2
col f1 f2( )( )( )





⋅ .
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0.50ℓ

0.50ℓ

0.45ℓ

bcol+d

bcol+d/2

The concrete shear capacity to resist punching shear is

	
V :=

5
2

k 4 f psi b min d ,d =40.9 kipc2 f c 02 f1 f2( ) ( )



 ⋅ ′ ⋅ ⋅ ⋅ ⋅

	
V :=1.6 f psi b min d ,d =53.68 kipc2min c 02 f1 f2( ) ( )⋅ ′ ⋅ ⋅ ⋅ ⋅

	 ϕVn2:= ϕv·Vc2min = 40.3·kip

	

Check_PunchingShear2:=
“OK” if V V

“Not good” otherwise

u2 n2≤ φ

	 Check_PunchingShear2 = “OK”

8.10.3  Check at column B2

The area of influence is

	 AI3 := (0.5·11)·(0.5·12) – bcol
2 = 141.222·ft2

The factored shear force is

	 Vu3 := AI3·TFL = 39.4·kip

The perimeter of critical section is

	 b03 := 4(bcol + min (df1,df2)) = 106·in.
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0.50ℓ 0.50ℓ

0.50ℓ

0.50ℓ

bcol+d

bcol+d

The concrete shear capacity to resist punching shear is

	
V :=

5
2

k 4 f psi b min d ,d =59.4 kipc3 f c 03 f1 f2( ) ( )



 ⋅ ′ ⋅ ⋅ ⋅ ⋅

	
V :=1.6 f psi b min d ,d =77.95 kipc3min c 03 f1 f2( ) ( )⋅ ′ ⋅ ⋅ ⋅ ⋅

	 ϕVn3 := ϕv·Vc3min = 58.5·kip

	

Check_PunchingShear3:=
“OK” if V V

“Not good” otherwise

u3 n3≤ φ

	 Check_PunchingShear3 = “Ok”
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Chapter 9

Design of a column

9.1  INTRODUCTION

The floor plan of a two-story medical facility building is shown in 
Figure 9.1. The building hosts two MRI units at the second level that are 
located in bays AB-34 and BC-34. The floor system is a one-way fiber-
reinforced polymer (FRP) reinforced concrete (RC) slab spanning along 
the east–west plan direction. The location of the building excluded the 
presence of any snow load. The building is located in a region of low 
seismicity. This design example describes the procedure to design col-
umn B3 (lower level). The frame considered in the analysis is displayed 
in Figure 9.2.

Loads on each floor consist of the self-weight, a superimposed dead load 
of 2.5 psf, and a live load of 100 psf (on both levels). The MRI equipment 
load of 815 psf is included in the self-weight and is considered as uniformly 
distributed over an area of 10 by 10 ft2 (Figure 9.1). It is assumed that the 
lateral load effects on the building are caused by a wind force of 100 kip 
applied conservatively at the roof level, and that the dead and live loads are 
the only sustained loads. A roof uplift pressure of 35 psf is also considered. 
Wind loads are computed according to ASCE 7-10.1

This example describes the procedure to design the first-story portion of 
column B3 (Figure 9.3). The design is presented as a sequence of five steps 
as summarized here:

Step 1	 Define column geometry and concrete properties
Step 2	 Compute factored loads
Step 3	 Design FRP longitudinal reinforcement
Step 4	 Design FRP shear reinforcement
Step 5	 Check creep-rupture stress

1	 ASCE 7-10, 2010, “Minimum Design Loads for Buildings and Other Structures,” American 
Society of Civil Engineers, Washington, DC.
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13.5 ft

Ptop

Pbottom

V

V

Mtop

Mbottom

Figure 9.3 � Column B3 (lower level).
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C
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30 ft

30 ft

17 ft 17 ft20 ft
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a

a

MRI

MRI

Figure 9.1 � Floor plan.

13 ft

16 ft

30 ft30 ft

B3

13.5 ft

Figure 9.2 � Frame section.
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The results of the column design are summarized next to facilitate the 
understanding of the five sequential steps devoted to calculations.

9.2  DESIGN SUMMARY

The slab thickness is 8 in., the dimensions of the beams supported by col-
umn B3 are 14 by 28 in., and the column dimensions are 20 by 20 in. The 
following loads are considered:

Slab self-weight	 96.7 psf
Superimposed dead load	 2.5 psf
MRI dead load	 815 psf
Live load	 100 psf
Roof uplift	 35 psf
Wind lateral force at the roof	 100 kip

To analyze the structure and calculate the lateral deflections, the stiffness 
of each member type is modified as

	 Ibeam = [0.075 + 0.275(Ef/Es)]Ig = 0.139Ig

	 Islab = [0.10 + 0.15(Ef/Es)]Ig = 0.135Ig

	 Icolumn = [0.40 + 0.30(Ef/Es)]Ig = 0.469Ig

The structural analysis is conducted for the frame displayed in Figure 9.2 
using the modified member stiffnesses. Table 9.1 presents the results of this 
analysis for column B3 when individual unfactored loads are applied.

It is assumed that the column is subject to monoaxial bending around 
the B axis line. Negative values of the axial load signify tension. The dif-
ference in the moment sign at the top and bottom of the column indicates 
double curvature (Figure 9.3). The forces and moments of Table 9.1 can be 
combined according to ACI 318-11 to obtain the ultimate factored loads 
that are used for design. The ultimate factored loads are listed in Table 9.2.

Table 9.1  Analysis results for unfactored single load cases (column B3)

Load case Axial load: P (kip)

Bending moment: M (ft-kip)

Shear: V (kip)Top Bottom

Dead (D) 186.9 52.1 –36.1 6.6

Live (L) 121.9 0.0 0.0 0.0

Wind (W+) –34.7 –32.0 98.2 9.6
Wind (W–) –34.7 32.0 98.2 9.7
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Frame type (sway or non-sway): According to ACI 318-11, a frame can 
be considered non-sway if the column end moments due to second-order 
effects do not exceed 5% of the first-order end moments:

	 Q = (ΣPuΔ0)/(Vulc) ≤ 0.05	 (9.1)

where:
Q = Stability index
ΣPu = Total vertical load in the story
Vu = Total story shear
Δ0 = First-order relative displacement between top and bottom of the story
lc = Length of the column center to center of joints, (16)

(12)-(30/2) = 177 in.

Table 9.3 shows that under no load combination is the frame sway type 
(Q ≤ 0.05).

Slenderness effects: For compression members in a non-sway frame, 
effects of slenderness in a column may be neglected when

	 klu/r ≤ (klu/r)max = 29−12(M1/M2) ≤ 35	 (9.2)

where:
k = 1.0: effective length factor for non-sway frames
lu = 162 in.: clear height of the column

Table 9.2  Analysis results for ultimate load combinations (column B3)

Load combination Axial load: Pu (kip)

Bending moment: Mu (ft-kip)

Shear: Vu (kip)Top Bottom

1.4D 261.7 73.0 –50.6 9.2
1.2D + 1.6L 419.3 62.5 –43.3 7.8
1.2D + 1.6W+ + 1.0L 290.8 11.4 113.7 7.6
1.2D + 1.6W– + 1.0L 290.8 113.7 –200.4 23.3
0.9D + 1.6W+ 112.8 –4.3 124.6 9.5
0.9D + 1.6W– 112.8 98.1 –189.6 21.3

Table 9.3  Calculation of stability index, Q

Load combination ΣPu (kip) Vu (kip) Δ0 (in.) Q Frame type

1.4D 1587 0.0 0.0 0.000 No sway
1.2D + 1.6L 2397 0.0 0.0 0.000 No sway
1.2D + 1.6W+ + 1.0L 1718 160.0 0.65 0.039 No sway
1.2D + 1.6W– + 1.0L 1718 –160.0 –0.65 0.039 No sway
0.9D + 1.6W+ 639 160.0 0.65 0.015 No sway
0.9D + 1.6W– 639 –160.0 –0.65 0.015 No sway
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r = (0.3)(20 in.) = 6.0 in.: radius of gyration of the column
klu/r = 27.0

From Table  9.2 it can be concluded that the maximum value of the 
(klu/r)max is associated with the case of single curvature; therefore:

	 (klu/r)max= 29−12(11.4/113.7) = 27.8

	 klu/r = 27< (klu/r)max

Hence slenderness effects may be disregarded.
P–M diagram: The interaction diagram was built following the proce-

dure discussed in Chapter 5. The assumed parameters and the geometry of 
a generic rectangular section are displayed in Figure 9.4.

For the analysis, it is assumed that the cross-section reinforcement is 
applied at i different levels (varying from 0 to Nf – 1) of depth df(i), and the 
spacing of the side reinforcement, sf, is constant.

The interaction diagram is constructed by locating the critical points 
listed next.

Condition 1: pure compression (c = +∞). The strain and stress distribu-
tions corresponding to point 1 are shown in Figure 9.5. Because the entire 
cross section is in compression, the contribution of the FRP reinforcement 
is neglected and reflected with an equivalent area of concrete.

The combined nominal axial and moment capacities, Pn and Mnx, are

	
0.85P f bhn c= ′

	 (9.3)

	 Mnx = 0

Condition 2: neutral axis intersecting the bottom fiber (c = h). The strain 
and stress distributions for this condition are shown in Figure  9.6. The 
concrete stress distribution, σc(x), is approximated by the stress block. The 

ith

b

h

df(i)
cc

sf Cg x

y

Figure 9.4 � Generic rectangular cross section.
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contribution of the FRP reinforcement is still null because the section is 
fully compressed.

The combined nominal axial and moment capacities, Pn and Mnx, for 
β1 = 0.8 are

	
0.85 (0.8 )P f b cn c= ′

	 (9.4)

	 0.85 (0.8 )
2

0.4M f b c
h

cnx c= ′ ⋅ −





Condition 3: neutral axis depth h ≥ c ≥ cbal. The cross-section failure 
is controlled by concrete crushing when the neutral axis depth is situ-
ated below the balanced location (c ≥ cbal), which can be computed as 
follows:

	 ( 1)c d Nbal
cu

cu fd
f f= ε

ε + ε
− 	 (9.5)

b

σc(x)

0.85fc´

0.8c
c = h

εcu

εf(0)= 0

εf(1)= 0

εf(2)= 0

εf(3)= 0

Figure 9.6 � Neutral axis at the lowest level of fibers.

b

h

εcu

εf(0)= 0

εf(1)= 0

εf(2)= 0

εf(3)= 0

0.85 fc´

Figure 9.5 � Pure compression.
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For any arbitrary neutral axis depth, c, falling in the range h ≥ c ≥ cbal, 
strain and stress distributions are shown in Figure 9.7. The balanced condi-
tion is represented by the case of (εf3 = εfd).

The combined nominal axial and moment capacities, Pn and Mnx, are

	

0.85 (0.8 ) ( ) ( )
0

1

P f b c A i E in c f f f

i

Nf

∑= ′ + ε
=

−

	 (9.6)

	 0.85 (0.8 )
2

0.4 ( ) ( )
2

( )
0

1

M f b c
h

c A i E i
h

d inx c f f f

i

N

f

f

∑= ′ ⋅ −





+ ε ⋅ −





=

−

Condition 4: neutral axis depth cbal ≥ c ≥ 0. The cross-section failure 
is triggered by rupture of the FRP reinforcement when the neutral axis is 
located above the balanced location. When the neutral axis intersects the 
top fiber (c = 0), the entire cross section is in tension and the FRP bars are 
the only component engaged in resisting the load. The strain and stress 
distributions for the case of c = 0 are shown in Figure 9.8.

b

h

c

Efεf(1)

0.8c

Efεf(2)

Efεf(3)

σc(x)
0.85fc´εcu

εf(0)= 0

εf(1)

εf(2)

εf(3)

Figure 9.7 � Neutral axis depth h ≥ c ≥ cbal.

b

h

εf(0)

εf(1)

εf(2)

εf(3) = εfd Efεf(3)= Efεfd

Efεf(2)

Efεf(1)

Efεf(0)

Figure 9.8 � Neutral axis depth c = 0.
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The combined nominal axial and moment capacities, Pn and Mnx, are

	

( )
0

1

P A i En f f fd

i

Nf

∑= ε
=

−

	 (9.7)

	 ( ) ( )
2

( )
0

1

M A i E i
h

d inx f f f

i

N

f

f

∑= ε ⋅ −



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=

−

Condition 5: pure tension (c = –∞). The strain and stress distributions 
for the case of pure tension are shown in Figure 9.9. The maximum tensile 
force constitutes the lowermost point of any interaction diagram and is the 
other point corresponding to zero eccentricity. Due to the linear behavior 
of the reinforcement, the portion of the interaction curve from the point of 
c = 0 to the point of c = –∞ is linear.

The combined nominal axial and moment capacities, Pn and Mnx, are

	

( )
0

1

P A i En f f fd

i

Nf

∑= ε
=

−

	 (9.8)
	 Mnx = 0

FRP reinforcement. Bar layout and typical details are shown in 
Figure 9.10(a) and 9.10(b).

Table 9.4 is provided to convert the US customary units to the SI system.

9.3 � STEP 1—DEFINE COLUMN GEOMETRY 
AND CONCRETE PROPERTIES

9.3.1  Geometry

h := 20 in.	 Cross-section depth
b := 20 in.	 Cross-section width
cc := 2.5 in.	 Concrete cover to center of longitudinal bar

b

h

Efεfd

Efεfd

Efεfd

Efεfd

εf(0) = εfd

εf(1) = εfd

εf(2) = εfd

εf(3) = εfd

Figure 9.9 � Pure tension.
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9.3.2  Concrete properties

The following concrete properties are considered for the design:

fc := 5000 psi	 Compressive strength

εcu := 0.003	 Ultimate compressive strain

: 145
lbf
ft3cρ = 	 Density

c
cE : 33 psi

lbf ft
fc

0.5
3

1.5

=
ρ
⋅







 ⋅ ′− 	 Compressive modulus of elasticity

Ec = 4074 ksi	 Computed as indicated in ACI 318-11

f : 7.5 f psict c= ⋅ ′⋅ 	 Concrete tensile strength

fct = 530.33 psi	 Computed as indicated in ACI 318-11

(a)

2'-4"

Lap splice

8 #8

1'-8"

5'-10"
(min)

#4 @ 6 in.

#4 @ 12 in.

#4 @ 12 in.

(b)

Typical Column Section

Typical no. 4 tie and cross-tie details

Note: 1-1/2-inch minimum
clear cover for ties

#4 cross-ties 8 #8

#4 ties

1´-2˝

1´-2˝

R=1.5˝ R=1.5˝

6˝

Figure 9.10 � (a) Reinforcement layout; (b) typical detail.



340  Reinforced concrete with FRP bars: Mechanics and design﻿

9.4  STEP 2—COMPUTE ULTIMATE LOADS

The frame structure is considered a non-sway and any slenderness effect is 
neglected, as discussed in the previous section. The analysis results per each 
single load case limited to the first-story portion of column B3 are shown 
as follows:

• Dead load (D):	 • Live load (L):
PD := 187 kip	 PL := 122 kip
MDtop := 52 kip·ft	 MLtop := 0 kip·ft
MDbottom := –36 kip·ft	 MLbottom := –0 kip·ft
VD := 6.6 kip·ft	 VL := 0 kip

• Wind (W+):	 • Wind (W–):
PW1 := –35 kip	 PW2 := –35 kip
MW1top := –32 kip·ft	 MW2top := 32 kip·ft

Table 9.4  Conversion table

US customary SI units

Lengths, areas, section properties
1 in. 25.4 mm

0.025 m
1 ft 304.8 mm

0.305 m
1 in.2 645 mm2

1 ft2 0.093 m2

1 in.3 16,387 mm3

1 in.4 416,231 mm4

Forces, pressures, strengths
1 lbf 4.448 N
1 kip 4.448 kN
1 lbf-ft 1.356 N.m
1 kip-ft 1.356 kN⋅m
1 psi 6.895 kPa
1 psf 47.88 N/m2

1 ksi 6.895 MPa
1 ksf 47.88 kN/m2

1 lbf/ft3 157.1 N/m3
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MW1bottom := 98 kip·ft	 MW2bottom := –98 kip·ft
VW1 := –9.6 kip	 VW2 := 9.6 kip

The analysis results per load combination are shown as follows:

•	 Load combination 1: 1.4D
Pu1 := 1.4PD = 261.8·kip
Mu1top := 1.4MDtop = 72.8·kip·ft
Mu1bottom := 1.4MDbottom = –50.4·kip·ft
Vu1 := 1.4VD = 9.24·kip

•	 Load combination 2: 1.2D + 1.6L
Pu2 := 1.2PD + 1.6·PL = 419.6·kip
Mu2top := 1.2MDtop + 1.6·MLtop = 62.4·kip·ft
Mu2bottom := 1.2MDbottom + 1.6·MLbottom = –43.2·kip·ft
Vu2 := 1.2VD + 1.6·VL = 7.92·kip

•	 Load combination 3: 1.2D + 1.6W+ + 1.0L
Pu3 := 1.2PD + 1.6·PW1 + 1.0PL = 290.4·kip
Mu3top := 1.2MDtop + 1.6·MW1top + 1.0MLtop = 11.2·kip·ft
Mu3bottom := 1.2MDbottom + 1.6·MW1bottom + 1.0MLbottom = 113.6·kip·ft
Vu3 := 1.2VD + 1.6·VW1 + 1.0·VL= –7.44·kip

•	 Load combination 4: 1.2D + 1.6W– + 1.0L
Pu4 := 1.2PD + 1.6·PW2 + 1.0PL = 290.4·kip
Mu4top := 1.2MDtop + 1.6·MW2top + 1.0MLtop = 113.6·kip·ft
Mu4bottom := 1.2MDbottom + 1.6·MW2bottom + 1.0MLbottom = –200·kip·ft
Vu4 := 1.2VD + 1.6·VW2 + 1.0·VL = 23.28·kip

•	 Load combination 5: 0.9D + 1.6W+

Pu5 := 0.9PD + 1.6·PW1 = 112.3·kip
Mu5top := 0.9MDtop + 1.6·MW1top = –4.4·kip·ft
Mu5bottom := 09MDbottom + 1.6·MW1bottom = 124.4·kip·ft
Vu5 := 0.9VD + 1.6·VW1 = –9.42·kip

•	 Load combination 6: 0.9D + 1.6W–

Pu6 := 0.9PD + 1.6·PW2 = 112.3·kip
Mu6top := 0.9MDtop + 1.6·MW2top = 98·kip·ft
Mu6bottom := 09MDbottom + 1.6·MW2bottom = –189.2·kip·ft
Vu6 := 0.9VD + 1.6·VW2 = 21.3·kip

9.5 � STEP 3—DESIGN LONGITUDINAL 
FRP REINFORCEMENT

Number of FRP reinforcement levels	 Nf := 3
Number of FRP bars at top and bottom level	 Nbar0 := 3
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h = 20.in

b = 20.in

Properties of the selected FRP reinforcement

Type_of_Fiber :=
Glass
Carbon

Bar_Size :=
#2
#3
#4
#5
#6
#7
#8
#9
#10

The manufacturer’s guaranteed mechanical properties are the following:

ffuu = 80·ksi	 Ultimate guaranteed tensile strength of the FRP
εfuu = 0.01404	 Ultimate guaranteed rupture strain of the FRP
Ef = 5700·ksi	 Guaranteed tensile modulus of elasticity of the FRP

The geometrical properties of the selected bar are

ϕf_bar = 1·in.	 Bar diameter
Af_bar = 0.785·in.2	 Bar area

FRP reduction factors: Table 7-1 of ACI 440.1R-06 is used to define the 
environmental reduction factor, CE. The type of exposure has to be selected:

Type_of_Exposure :=
Interior
Exterior
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CE = 0.8	 Environmental reduction factor for GFRP

Table  8-3 of ACI 440.1R-06 is used to define the reduction factor to 
take into account the FRP creep-rupture stress. Creep-rupture stress in the 
FRP has to be evaluated considering service conditions defined as the total 
unfactored dead loads and the sustained portion of the live load (20% of 
the total live load).

kcreep = 0.2	 Creep-rupture stress limitation factor

FRP ultimate design properties: The design properties are calculated per 
Equations (5.2) and (5.3), defined in Chapter 5.

ffu := min(CE·ffuu,0.01·Ef) = 57·ksi	 Design tensile strength
εfu := min(CE·εfuu,0.01) = 0.01	 Design rupture strain

FRP creep-rupture limit stress: The FRP creep-rupture limit stress is cal-
culated per Section 8.4 of ACI 440.1R-06.

	 ff_creep := kcreep·ffu = 11.4·ksi

P–M diagram. Preliminary calculations: The spacing between the FRP 
reinforcement levels can be calculated as follows.

	 s :
h 2 c 2

2
N 1

7 inf

c
f _bar

f
=

− ⋅ − ⋅ φ

−
= ⋅ .

	
( )≥ φ

CheckSpacing :=
“OK”if s min 1in,

“Reducenumberof reinforcement layers” otherwise

f f _bar

	 CheckSpacing = “OK”

The index indicates the reinforcement level is

	 i := 0,1 .. Nf – 1

Depth of FRP reinforcement level is

	 d i : c
2

i sf c
f _bar

f( ) = +
φ





+ ⋅
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Number of bars per level of reinforcement is

	 N (i) :

N if i 0

2 if1 i N 2

N if i N 1
bars

bar0

f

bar0 f

==

==
= ≤ ≤ −

−

Total area of FRP reinforcement per level of reinforcement is

	 Af(i) := Af_bar·Nbars(i)

The FRP reinforcement area shall not be smaller than 1% of the cross-
section gross area:

	 Af_min := 0.01·b·h = 4·in.2

∑ ∑( ) ( )
=

≥ = ⋅










=

−

=

−

Check_MinReinf :
“OK” if A i A

“Not satisfied” otherwise

A i 6.28 inf f _ min

i 0

N 1

f
2

i 0

N 1f f

	 Check_MinReinf = “OK”

9.5.1  Point 1—Pure compression

εcu = 0.003

h = 20·in

Nominal axial strength is

	 Pn1 := 0.85f ′c·b·h = 1700·kip

Nominal flexural strength is

	 Mn1 := 0 kip·ft

Maximum tensile stress in FRP bars is

	 εf1 := 0
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The strength reduction factor is

	

:

0.65 if 1.15
2

0.65

1.15
2

0.75 if1.15
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0.75

0.75
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fu
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fu

f1

fu

1

φ =
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ε

≤

− ε
ε

− ε
ε

≥

φ =

The ACI compressive strength limitation is

	 ϕ1·0.8·Pn1 = 1020·kip

9.5.2 � Point 2—Neutral axis at the level 
of the lowest section fibers

Neutral axis depth is

	 c2 := h = 20·in.

c2 = 20.in

εcu = 0.003

Concrete compressive strain distribution is

	 x :
c

xc2
cu

2
( )ε =

ε

The strain in FRP reinforcement is

	
(i) :

c
c d i if

c
c d i

0 if
c

c d i 0
f2

cu

2
2 f

cu

2
2 f fu

cu

2
2 f

( ) ( )

( )

( ) ( )

( )
ε =

ε ⋅ − ε ⋅ − ≥ −ε

ε ⋅ − ≥
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Axial strength is
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	 Pn2 = 1306·kip

Flexural strength is
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The strength reduction factor is
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9.5.3  Point 3—Neutral axis within the cross section

In this step, the neutral axis depth ranges between h and the balanced neu-
tral axis depth cbal (compression failure):

	 c : d N 1 3.9 inbal
cu

cu fu
f f( )=

ε
ε + ε

⋅ − = ⋅ .

Intervals of variation of the neutral axis depth are

	
j : 0,

h c
50in

..
h c

in
bal bal=

− −
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Neutral axis depth is

	 c3(j) := h – j·in.

Concrete compressive strain distribution is

	
j , x :

c j
xc

cu

3
( ) ( )ε =

ε ⋅

Strain in FRP reinforcement is

	

(j,i) :
c j
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c j
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εcu = 0.003

c3(j)

εf3(j, 3)

εf3(j, 2)

εf3(j, 1)

Axial strength is
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Flexural strength is
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The strength reduction factor is

	

j :

0.65 if 1.15
j,N 1

2
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The equations for computing the axial strength, the bending moment, 
and the phi-factor are shown above, and are functions of the neutral axis 
depth represented by the factor j.

9.5.4  Point 4—Balanced conditions

Neutral axis depth is

	 c4 := cbal = 3.9·in.

εcu = 0.003

εfu = 0.01

c4 = 3.9.in

Concrete compressive strain distribution is

	 (x) :
c

xc4
cu

4
ε =

ε

The strain in FRP reinforcement is

	

i : c
c d i if

c
c d i 1.05

0 if
c

c d i 0
f4

cu

4
4 f

cu

4
4 f fu

cu

4
4 f

( ) ( )

( )
( )

( ) ( )

( )
ε =

ε ⋅ − ε ⋅ − ≥ − ε

ε ⋅ − ≥
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Axial strength is

	
∑( )( ) ( ) ( )= ⋅ ′ ⋅ ⋅ ⋅ + ⋅ ⋅ ε











=

−

P : 0.85 f b 0.8 c A i E in4 c 4 f f f4

i 0

N 1f

	 Pn4 = 91·kip

	 Flexural strength

M : 0.85 f b 0.8 c
h
2

0.4 c A i E i
h
2

d (i)

M 266 kip ft

n4 c 4 4 f f f4 f

i 0

N 1

n4

f

∑ ( ) ( )( ) ( )= ⋅ ′ ⋅ ⋅ ⋅ ⋅ − ⋅





+ ⋅ ⋅ ε ⋅ −
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
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
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




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
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	 Strength reduction factor
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9.5.5 � Point 5—Neutral axis at the level 
of the highest section fibers

εfu = 0.01

The strain in FRP reinforcement is

	
(i) :

d N 1
d if5

fu

f f
f( ) ( )ε =

−ε
−

⋅
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Axial strength is

	 P : A i E i 211 kipn5 f f f5

i 0

N 1f

∑( )( ) ( )= ⋅ ⋅ ε = − ⋅
=

−

Flexural strength is

	

M : A i E i
h
2

d i 64.518 kip ftn5 f f f5 f

i 0

N 1f

∑ ( ) ( ) ( )= ⋅ ⋅ ε ⋅ −
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
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
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
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−

The strength reduction factor is
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0.65 if1.15
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9.5.6  Point 6—Pure tension

h = 20.in

εfu = 0.01

The strain in FRP reinforcement is

	 εf6(i) := –εfu

Axial strength is

	
P : A i E i 358 kipn6 f f f6

i 0

N 1f

∑( )( ) ( )= ⋅ ⋅ ε












= − ⋅
=

−
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Flexural strength is

	 Mn6 := 0 kip·ft

The strength reduction factor is

	

:

0.65 if 1.15
N 1

2
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N 1
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P–M interaction diagram: Both nominal and design P–M curves are 
plotted next. The black dots correspond to the pairs of ultimate bending 
moment and axial force (Mu, Pu) relative to the load combinations defined 
in step 2. All eleven dots are enclosed within the design P–M curve and 
therefore the column section is adequate to carry the design loads.
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Development length and tension lap splice: The development length, ld, 
for straight bars can be calculated using Equation (11-3) of ACI 440.1R-06. 
The minimum between cover to bar center and half of the center-to-center 
bar spacing is

	
C : min c

2
,
s
2

= 3 inb2 c
f_bar f= +

φ





⋅

The bar location modification factor is:

	 αPos := 1.5

The minimum development length is computed according to ACI 440.1R-
06 Equation 11-6:

	 1 :

f

f psi
340

13.6
C

= 52.4 in.d_min

Pos
fu

c

b2

f_bar

f_bar=
α ⋅

′ ⋅
−

+
φ

φ

The following development length is considered and adopted:

	 ld := 53 in.

The recommended development length of FRP tension lap splices is 1.3ld 
(Section 11.4 of ACI 440.1R-06). The minimum recommended tension lap 
splice development length is

	 1.3ld = 69 in.

A tension lap splice of 70 in. is considered and adopted.

9.6  STEP 4—DESIGN FRP SHEAR REINFORCEMENT

Preliminary calculations: The maximum shear acting on the column is

	 Vu := max(Vu1, Vu2, Vu3, Vu4, Vu5, Vu6) = 23∙kip

The ratio of the neutral axis depth to effective depth of the longitudinal 
reinforcement can be calculated as follows:

	

A (k, i) :
A (i) if d (i) k d N 1

A (i) if d (i) k d N 1
f_e

f f f f

f f f f

( )
( )=

− ≤ ⋅ −

≥ ⋅ −

	 S (k) : b
k d N 1

2
E
E

A k, i d (i) k d N 1o
f f

2

f

c
f_e f f f

i=0

N 1f

∑( ) ( )( )( ) ( )= ⋅
⋅ −

− ⋅ ⋅ ⋅ ⋅ − 

−
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First guess:

	 k0 := 0.2

Given:

	 So(k0) = 0

Solve for k:

	 kelastic := root(So(k0),k0) = 0.15

The concrete shear capacity, Vc, can be calculated per Equation (9-1) of 
ACI 440.1R-06:

	 ( )( )= ′ ⋅ ⋅ ⋅ − ⋅V : 5 f psib k d N 1 = 18.1 kipc c elastic f f

The shear reduction factor given by ACI 440.1R-06 is adopted:

	 ϕv := 0.75

	
⋅ φ ⋅ ⋅1

2
V = 7 kipv c

	

= ⋅φ ⋅ ≥Check_ShearReinf :

“OK. No shear reinforcement is needed.”

if
1
2

V V

“Shear reinforcement is needed” otherwise

v c u

	 Check_ShearReinf = “Shear reinforcement is needed”

Design shear reinforcement: The ACI 440.1R-06 minimum manufac-
turer’s guaranteed mechanical properties of the selected bars are

Design shear reinforcement

Stirrup_Size :=
#2
#3
#4
#5
#6
#7
#8
#9
#10
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ffuuv = 100∙ksi	 Ultimate guaranteed tensile strength of the FRP
εfuuv = 0.018	 Ultimate guaranteed rupture strain of the FRP
Ef = 5700∙ksi	 Guaranteed tensile modulus of elasticity of the FRP

The geometrical properties of the selected bars are

ϕf_stirrup = 0.5∙in.	 Bar diameter
Af_stirrup = 0.196∙in.2	 Bar area
rbsv := 3ϕf_stirrup = 1.5∙in.	 Radius of the bend

The tail of the stirrup is to be at least 12 bar diameters:

	 1vtail := 12∙ϕf_stirrup = 6∙in.

The design tensile strength of the bend of the GFRP bar is Equation (7-3) 
of ACI 440.1R-06:

The design tensile strength is:

	 ffuv := CE ∙ ffuuv = 80 ksi

	
f : 0.05

r
0.3 f = 25.6 ksifbsv

bsv

f_stirrup
fu= ⋅

φ
+







⋅

The stress level in the shear reinforcement is limited by Equation (9-3) of 
ACI 440.1R-06:

	

f :
0.004 E if 0.004 E f

f otherwise
fv

f f fbsv

fbsv

( )
=

⋅ ⋅ ≤

	 ffv = 22.8∙ksi

The area of the two-leg tie and the cross-tie is

	 Afv := 3∙Af_stirrup = 0.59∙in.2

The maximum stirrup spacing, ssv, is Equation (9-4) of ACI 440.1R-06:

	 s :
A f d N 1

V V
= 17.6 insv_max1

fv v fv f f

u v c

( )
=

⋅φ ⋅ ⋅ −
− φ ⋅

⋅ .

The selected spacing is

	 ssv := 12 in.
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The shear resistance provided by FRP stirrups and cross-tie, Vf, is 
Equation (9-2) of ACI 440.1R-06:

	
V :

A f d N 1
s

= 19 kipf0
fv fv f f

sv

( )
=

⋅ ⋅ −
⋅

Vf cannot exceed 3Vc, as discussed in Chapter 4:

	 Vf := min(Vf0,3Vc) = 19∙kip (3Vc = 54.258∙kip)

The nominal shear capacity, Vn, is

	 Vn := Vc + Vf = 37 · kip

	 ϕv · Vn = 28 · kip

	
φ ⋅ ≥

Check_Shear :=
“OK” if V V

“Not good” otherwise

v n u

	 Check_Shear = “OK”

The maximum stirrup spacing is the minimum of the least dimension of 
the column: 12 longitudinal bar diameters and 24 tie bar diameters:

	
s : min min b,h ,12 ,24 12 in.svmax f _bar f _ stirrup( )( )= ⋅ φ ⋅φ  = ⋅

	

=
≥ ∧ ≥

Check_Spacing :
“OK” if s s s s

“Not good” otherwise
sv_max1 sv svmax sv

	 Check_Shear = “OK”

9.7  STEP 5—CHECK CREEP-RUPTURE STRESS

Creep-rupture stress in the GFRP has to be evaluated considering the total 
unfactored dead loads and the sustained portion of the live load (20% of 
the total live load). The service maximum bending moment is

	
M : M M 36 kip fts Dbottom Lbottom= + = ⋅ ⋅



356  Reinforced concrete with FRP bars: Mechanics and design﻿

The bending moment due to dead load plus 20% of live load is

	
M : M

P 0.20P
P P

24.6 ft kipcreep s
D L

D L
= ⋅ +

+
= ⋅ ⋅

The ratio of modulus of elasticity of bars to modulus of elasticity of con-
crete is

	
N :

E
E

1.399f
f

c
= =

The ratio of depth of neutral axis to reinforcement depth is

	 kelastic = 0.15

The maximum tensile stress in the FRP is

	

f :
P 0.20P

b h
M

A N 1 d N 1 1
k

3

7.2 ksifmax_creep
D L creep

f f f f
elastic

( )
( ) ( )

= −
+

⋅
+

− ⋅ − ⋅ −





= ⋅

	

( )
=  

≤ = ⋅
Check_Creep:

“OK” if f f f 11.4 ksi

“Not good” otherwise

fmax_creep f_creep f_creep

	 Check_Shear = “OK”
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Chapter 10

Design of square footing 
for a single column

10.1  INTRODUCTION

Shallow foundations must be designed to safely resist the effects of the 
applied factored axial and shear forces, and bending moments. The size 
(base area) of a shallow foundation is determined based on the permissi-
ble soil pressure, which is computed by principles of soil mechanics. For the 
specific case of an isolated footing, depth and required amount of flexural 
reinforcement are determined based on the design requirements governed 
by the provisions of Chapter 4 (design of flexural members). As a general 
consideration, a footing supporting a single column (isolated footing) must 
comply with all the provisions of flexure and shear for slabs. A combined 
footing may be designed as a beam in the longitudinal direction and as an 
isolated footing in the transverse direction over a defined width on each side 
of the supported columns. Similarly, a mat foundation normally behaves 
very much like a two-way slab without beams and could be designed 
accordingly.

This example illustrates the design of the isolated footing under column 
B3 (Figure  10.1) of the two-story medical facility building presented in 
Chapter 9.

The design of the isolated footing is presented as a sequence of seven 
steps as summarized here:

Step 1	 Define concrete properties
Step 2	 Compute service axial forces and bending moments
Step 3	 Preliminary analysis (footing area and depth)
Step 4	 Design FRP reinforcement
Step 5	 Check creep-rupture stress
Step 6	 Check crack width
Step 7	 Recheck shear strength
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The results of the footing design are summarized next to facilitate the 
understanding of the seven sequential steps devoted to calculations.

10.2  DESIGN SUMMARY

The following soil properties are considered:

Soil density	 130 psf
Permissible soil pressure	 4000 psf

An additional surcharge of 100 psf due to the live load applied directly to 
the ground floor is also considered.

The axial forces and bending moments at the bottom of column B3 are 
to be considered for the design of the footing. The individual unfactored 
forces and moments resulting from dead, live, and wind loads are sum-
marized in Table 10.1. The resulting service (unfactored) combinations are 
listed in Table 10.2. The shear force transferred by the column to the foot-
ing is disregarded in this example.

The soil pressure distribution resulting from the most demanding load 
combination is shown in Figure 10.2.

The critical sections for shear strength checks and other geometrical 
dimensions are defined in Figure 10.3. For lightly reinforced fiber-reinforced 
polymer (FRP) reinforced concrete members, shear strength (one way and 
two way) can govern the design.

The final reinforcement layout is shown in Figure 10.4 with the footing 
and column dimensions.

Table 10.3 is provided to convert US customary to the SI system.

P

Mbottom

Finished �oor elevation 

5 ft

L

Surcharge

Figure 10.1 � Schematic view of footing under column B3.
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10.3  STEP 1—DEFINE CONCRETE PROPERTIES

10.3.1  Concrete properties

The following concrete properties are considered for the design:
Compressive strength is

	 f ′c:= 5000 psi

Ultimate compressive strain is

	 εcu := 0.003

Density is

	 ρ =: 145
Ibf
ft

c 3

Soil pressure distribution 

qu,max

Figure 10.2 � Soil pressure distribution.

Table 10.1  Individual unfactored forces and moments 
action on footing of column B3

Load case Axial load: P (kip) Moment: M (ft-kip)

Dead (D) 189.6 32.3
Live (L) 123.8 0.0
Wind (W) –35.2 90.9

Table 10.2  Service combinations of column B3

Load combination Axial load: P (kip) Moment: M (ft-kip)

D 189.6 32.3
D + L 313.4 32.3
D + L + W 278.2 123.2
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10'-0"

2'-6"

5'-10"
(min) Lap splice

8 #8

1'-8"

14 #10
(both directions)

Figure 10.4 � Final reinforcement layout.

b =10.0 ft.

b2 =20+d

b1 =20+d
b =10.0 ft.

20
 in

.

Critical section
for beam action

d

20 in.

Tributary width
for beam action

d/2

Critical perimeter 
for two-way action

d = 26 in. 

Figure 10.3 � Critical cross sections for shear strength checks.
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Compressive modulus of elasticity is

	 = ρ





 ⋅ ′−E : 33 psi

Ibf.ft
fc

0.5 c
3

1.5

c

The following is computed as indicated in Section 8.5.1 of ACI 318-11:

	 Ec = 4074·ksi

Concrete tensile strength is

	 f : 7.5 psi fct
0.5

c= ⋅ ⋅ ′

This is computed as indicated in Section 9.5.3.2 of ACI 318-11:

	 fct = 530·psi

Table 10.3  Conversion table

US customary SI units

Lengths, areas, section properties
1 in. 25.4 mm

0.025 m
1 ft 304.8 mm

0.305 m
1 in.2 645 mm2

1 ft2 0.093 m2

1 in.3 16,387 mm3

1 in.4 416,231 mm4

Forces, pressures, strengths
1 lbf 4.448 N
1 kip 4.448 kN
1 lbf-ft 1.356 N.m
1 kip-ft 1.356 kN⋅m
1 psi 6.895 kPa
1 psf 47.88 N/m2

1 ksi 6.895 MPa
1 ksf 47.88 kN/m2

1 lbf/ft3 157.1 N/m3
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The stress-block factor, β1, is computed as indicated in Section 10.2.7 of 
ACI 318-11:

	 :

0.85 if f 4000psi = 0.8

1.05 0.05
f

1000psi
if 4000psi < f < 8000psi

0.65 otherwise

1

c

c
cβ =

′ =

− ⋅ ′ ′

10.3.2 � Analytical approximations of concrete 
compressive stress–strain 
curve—Todeschini’s model

The compressive strain at peak is

	 :
1.71 f

E
0.0021c0

c

c

ε = ⋅ ′ =

The compressive stress at peak is

	
" : 0.9

f
psi

c
cσ = ⋅ ′

The stress–strain curve equation is

	 ( )σ ε =
⋅ σ ⋅ ε

ε






+ ε
ε







" :
2 "

1
c c

c
c

c0

c

c0

2

The concrete compressive stress–strain curve is

0 0.001 0.002 0.0030

2000

4000

Strain, in./in.

St
re

ss
, p

si

σc(εc)

εc

Concrete Compressive Stress-Strain Curve
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10.4 � STEP 2—COMPUTE SERVICE AXIAL 
LOADS AND BENDING MOMENTS

The axial forces and bottom moments of column B3 (see Chapter 9) are the 
forces to be considered for design of the footing. Analysis results per single 
load case are

Dead load (D):	 Live load (L):	 Wind (W):
PD := 190 kip	 PL := 124 kip	 PW := –35 kip
MD := 32 kip·ft	 ML := 0 kip·ft	 MW := 91 kip·ft

Analysis results per load combination are

•	 Load combination 1: D
PS1 := PD = 190·kip
MS1 := MD = 32·kip·fit

•	 Load combination 2: D + L
PS2 := PD + PL = 314·kip
MS2 := MD + ML = 32·kip·ft

•	 Load combination 3: D + L + W
PS3:= PD + PL + PW = 279·kip
MS3 := MD + ML + MW = 123·kip·ft

10.5  STEP 3—PRELIMINARY ANALYSIS

10.5.1  Design footing base area

To estimate the weight of soil and concrete above footing base, it was 
assumed that average density was

	 ρsoil := 130 pcf

An additional surcharge due to the loads on the ground floor is considered:

	 sadditional := 100 psf

Foundation base depth is

	 z := 5 ft

The total pressure of surcharge at the foundation base depth is

	 stotal := ρsoil·z + sadditional = 750·psf

The permissible soil pressure is

	 σadm := 4000 psf
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The net admissible soil pressure is

	 qn := σadm – stotal = 3250·psf

The minimum required base area of the footing is

	 A :
max P ,P ,P

q
= 96.6 ftmin

s1 s2 s3

n

2( )= ⋅

A square footing is selected of side b equal to

	 b = 10 ft

	 Afooting := b2 = 100·ft2

	 CheckArea :=
“OK” if A A

“Not Good” otherwise

footing min≥

	 CheckArea = “OK”

10.5.2  Verify effects of eccentricity

The total weight of surcharge is

	 Stotal := stotal·Afooting = 75·kip

The eccentricity, e, relative to each load combination is
Load combination 1:

	 e :
M

P +S
= 0.121 ft1

s1

s1 total

= ⋅

Load combination 2:

	 e :
M

P +S
= 0.082 ft2

s2

s2 total

= ⋅

Load combination 3:

	 e :
M

P +S
= 0.347 ft3

s3

s3 total

= ⋅
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The average soil pressure, qave, relative to each load combination can be 
computed as follows:

Load combination 1:

	
q :

P +S
A

= 2.65 ksfave1
s1 total

footing

= ⋅

Load combination 2:

	
q :

P +S
A

= 3.89 ksfave2
s2 total

footing

= ⋅

Load combination 3:

	
q :

P +S
A

= 3.54 ksfave3
s3 total

footing

= ⋅

The maximum soil pressure, qmax, relative to each load combination can 
be computed as follows:

Load combination 1:

	

q :=

1+
6 e

b
q if

e
b

1
6

= 2.8 ksf

4

3 1
2e
b

q if
e
b

1
6

e
b

1
2

max1

1
ave1

1

1
ave1

1 1

⋅



 ⋅






 ≤ ⋅

⋅ −













⋅ ≥ ∧ ≤

Load combination 2:

	
q :

1
6 e

b
q if

e
b

1
6

= 4.1 ksf

4

3 1
2e
b

q if
e
b

1
6

e
b

1
2

max2

2
ave2

2

2
ave2

2 2
=

+ ⋅



 ⋅






 ≤ ⋅

⋅ −













⋅ ≥ ∧ ≤
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Load combination 3:

	

q :

1
6 e

b
q if

e
b

1
6

= 4.3 ksf

4

3 1
2e
b

q if
e
b

1
6

e
b

1
2

max3

3
ave3

3

3
ave3

3 3
=

+ ⋅



 ⋅






 ≤ ⋅

⋅ −













⋅ ≥ ∧ ≤

The maximum soil pressure shall not exceed the admissible soil pressure. 
Note that it is typically acceptable to increase the allowable soil pressure when 
the maximum pressure is investigated. Here, an increase of 20% is deemed 
appropriate. The ratio between the eccentricity and the side of the footing, 
e/b, is also normally limited to a maximum of 0.25. Furthermore, under seis-
mic or wind loading the allowable soil pressure can be increased by 33%.

Load combination 1:

	

CheckSoilPressure1 :
“OK” if q 1.2

“Not good” otherwise

max1 adm
=

≤ ⋅ σ

	 CheckSoilPressure1 = “OK”

Load combination 2:

	

CheckSoilPressure2 :
“OK” if q 1.2

“Not good” otherwise

max2 adm
=

≤ ⋅ σ

	 CheckSoilPressure2 = “OK”

Load combination 3:

	

CheckSoilPressure3 :
“OK” if q 1.2 1.33

“Not good” otherwise

max3 adm
=

≤ ⋅ ⋅ σ

	 CheckSoilPressure3 = “OK”

10.5.3  Ultimate pressure under the footing

To proportion the footing for strength, factored loads are considered.
Load combination 1:

	 Pu1:= 1.4PD = 266⋅kip

	 Mu1:= 1.4⋅MD = 44.8⋅kip⋅ft
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Load combination 2:

	 Pu2 := 1.2PD + 1.6PL = 426.4⋅kip

	 Mu2 := 1.2⋅MD + 1.6ML = 38.4⋅kip⋅ft

Load combination 3:

	 Pu3 := 1.2PD + 1.0PL + 1.6PW = 296⋅kip

	 Mu3 := 1.2⋅MD + 1.0ML + 1.6MW = 184⋅kip⋅ft

The eccentricity, e, relative to each factored load combination is
Load combination 1:

	
e :

M
P

0.168 ftu1
u1

u1
= = ⋅

Load combination 2:

	
e :

M
P

0.09 ftu2
u2

u2
= = ⋅

Load combination 3:

	
e :

M
P

0.622 ftu3
u3

u3
= = ⋅

The average soil pressure, quave, relative to each factored load combina-
tion can be computed as follows:

Load combination 1:

	
q :

P
A

2.7 ksfuave1
u1

footing

= = ⋅

Load combination 2:

	
q :

P
A

4.3 ksfuave2
u2

footing

= = ⋅

Load combination 3:

	
q :

P
A

3 ksfuave3
u3

footing

= = ⋅
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The maximum soil pressure, qu, relative to each factored load combination 
can be computed as follows:

Load combination 1:

	

q :

1
6 e

b
q if

e
b

1
6

2.9 ksf

4

3 1
2e

b

q if
e
b

1
6

e
b

1
2

u1

u1
uave1

u1

u1
uave1

u1 u1
=

+ ⋅



 ⋅






 ≤ = ⋅

⋅ −













⋅ ≥ ∧ ≤

Load combination 2:

	

q :

1
6 e

b
q if

e
b

1
6

4.5 ksf

4

3 1
2e

b

q if
e
b

1
6

e
b

1
2

u2

u2
uave2

u2

u2
uave2

u2 u2
=

+ ⋅



 ⋅






 ≤ = ⋅

⋅ −













⋅ ≥ ∧ ≤

Load combination 3:

	

q :

1
6 e

b
q if

e
b

1
6

4.1 ksf

4

3 1
2e

b

q if
e
b

1
6

e
b

1
2

u3

u3
uave3

u3

u3
uave3

u3 u3
=

+ ⋅



 ⋅






 ≤ = ⋅

⋅ −













⋅ ≥ ∧ ≤

The assumed soil pressure distribution was shown in Figure 10.2. Based 
on the three load combinations, the following soil pressure distribution is 
used for design.

b = 10.ft

4.02 ksf qumax := max(qu1, qu2, qu3)
qumax = 4.5. ksf
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10.5.4  Design for depth

A first assumption of reinforcement area based on that required for shrink-
age and temperature (ρf,ts) is reasonable:

Assuming:

	 ffu′ := 0.7⋅70 ksi = 49⋅ksi

	 Ef ′ := 5700 ksi

	
: min 0.0036,0.0018

60ksi
f

29000ksi
E

0.0036f_ts
fu' f'

ρ = ⋅





⋅








 =

Note that ρf,ts is calculated based on the gross area of the concrete cross 
section, whereas ρf is calculated based on the effective area as determined 
by the reinforcement depth. The FRP reinforcement ratio ρf is selected as 
1.5 ρf,ts:

	 ρf := 1.5⋅ρf_ts = 0.0054

For lightly FRP reinforced sections, shear strength can be the factor that 
governs the thickness. The critical sections considered for the shear checks 
are indicated in Figure 10.3.

Beam (one-way) action: The column width is

	 bcol := 20 in

As a starting point, an FRP reinforcement depth equal to the column 
width is assumed:

	 d1 := bcol = 20⋅in.

The tributary width at a distance d1 from the column can be calculated 
as follows:

	 w :
b
2

b
2

d 30 intributary
col

1= − − = ⋅ .

The tributary area is therefore equal to

	 Atributary := b⋅wtributary = 25⋅ft2

The ultimate shear force is equal to

	 Vu := max(qu1,qu2,qu3)⋅Atributary = 112.4⋅kip
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Assuming an FRP modular ratio equal to

	 nf ′ := 1.4

The neutral axis depth to FRP effective depth ratio of the cracked section 
is the larger of

	
k : max 2 n n n ,0.16 0.16f f f f

2
f f( ) ( ) ( )= ⋅ ρ ⋅ + ρ ⋅ − ρ ⋅





=′ ′ ′

The nominal shear strength is

	
V : 5 f psi b k d 136 kipn1 c 1= ′ ⋅ ⋅ ⋅ ⋅ = ⋅

The shear strength reduction factor is

	 ϕV := 0.75

	

=
≤ φ ⋅

CheckShear1 :
“OK” if V V

“Notgood”otherwise

u v n1

	 CheckShear1 = “Not good”

A new value of effective depth can be computed as follows:
First guess:

	 d0 := bcol = 20⋅in.

Given:

	
f(d ) : V 5 f psi k d b2 u V c 2= − φ ⋅ ⋅ ′ ⋅ ⋅ ⋅ ⋅

Solve for effective depth:

	 f(d2) = 0

	 d2 := root((f(d0)), d0) = 22.1⋅in.

A cover of 4.5 in. from the centroid of the reinforcement is considered.
The following thickness is assumed:

	 h′ := 27 in.

The following effective depth is computed based on a 4.5 in. cover:

	 d′ := 22.5 in.
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The new nominal shear strength is

	
V : 5 f psi b k d 153 kipn' c= ′ ⋅ ⋅ ⋅ ⋅ ′ = ⋅

	

=

≤ φ ⋅
= ⋅

φ ⋅ = ⋅

=

′

′

CheckShear2 :

“OK” if V V

“Not good” otherwise

(V 112 kip and

V 115 kip)

CheckShear2 “OK”

u V n

u

V n

A footing thickness of 27 in. is therefore acceptable for the one-way 
shear check.

Punching (two-way) action:
Load combination 1:

	 b1′ = bcol + d′ = 42.5·in.

	 b2′ := b1′

First, the shear forces and moments acting on the boundary of the criti-
cal section for punching shear must be calculated from the axial forces and 
moments at the bottom of the column, which are presented above. Since 
none of the three load combinations generates uplift, it can be concluded 
that shear on the boundary of the critical section, Vu, is proportional to the 
ratio of tributary area to total area. The tributary area is the part of the 
foundation outside the critical perimeter for the two-way action. Vu can be 
computed as follows:

	
V : P

b b b

b
232.6 kipu_ps1 u1

2
1 2

2

( )= ⋅
− ⋅

= ⋅′
′ ′

Moment on the boundary of the critical section, Mu, is proportional to 
the ratio moment of inertia of tributary area to total area. Mu can be com-
puted as follows:

	

M : M

b
12

b
4

b
12

42.7 kip ft

b

u_ps1 u1

4
1
3

2

4= ⋅
− ⋅









= ⋅ ⋅′

′ ′
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The portion of this moment transferred by the eccentricity of the shear 
force, γvMu, can be calculated as follows. This moment creates additional 
shear on the surface of the critical section for punching shear:

	

:
1

1+
2
3

b
b

= 0.6f
1

2

γ =
⋅

′
′

′

	 γv′:= 1 – γf′ = 0.4

	 γv′ ·Mu_ps1′ = 17.1·kip·ft

The same can be repeated for the other two load combinations:
Load combination 2:

	
V _ : P

b b b

b
= 372.9 kipu ps2 u2

2
1 2

2

( )= ⋅
− ⋅

⋅′
′ ′

	

M _ : M

b
12

b b
4

b
12

36.6 kip ftu ps2' u2

4
1
3

2

4= ⋅
− ⋅









= ⋅ ⋅

′ ′

	 γv′·Mu_ps2′ = 14.6·kip·ft

Load combination 3:

	
V _ := P

b b b

b
258.9 kipu ps3 u3

2
1 2

2

( )⋅
− ⋅

= ⋅′
′ ′

	

M _ : M

b
12

b b
4

b
12

175.3 kip ftu ps3 u3

4
1
3

2

4= ⋅
− ⋅









= ⋅ ⋅′

′ ′

	 γv′·Mu_ps3′ = 70.13·kpi⋅ft

The maximum punching shear stress vu is to be computed.
The depth of the concrete that resists shear is computed as

	 ⋅ ′ ⋅′c :=
5
2

k d = 9 inv .
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The total area of concrete resisting two-way shear is

	 Ac′ := 2·(b1′ + b2′)cv′ = 1530·in.2

The property of the assumed critical section analogous to the polar 
moment of inertia is

	
J :

c b
6

+
c b

6
+

c b b
2

465757 inc
v 1

3
v
3

1 v 1
2

2 4= ⋅ ⋅ ⋅ ⋅ = ⋅′
′ ′ ′ ′ ′ ′ ′

Load combination 1:

	
v :

V
A

+
M b

2J
=161.4 psiu1

u_ps1

c

v u_ps1 1

c

= γ ⋅ ⋅ ⋅′
′

′

′ ′ ′

′

Load combination 2:

	
v :

V
A

+
M b

2J
251.7 psiu2

u_ps2

c

v u_ps2 1

c

= γ ⋅ ⋅ = ⋅′
′

′

′ ′ ′

′

Load combination 3:

	
v :

V
A

+
M b

2J
207.6 psiu3

u_ps3

c

v u_ps3 1

c
=

γ ⋅ ⋅
= ⋅′

′

′

′ ′ ′

′

	

CheckPunchingShear :
“OK” if max v ,v ,v 4 f psi

“Not good” otherwise

u1 u2 u3 v c( )
′ =

≤ φ ⋅ ′ ⋅′ ′ ′

	 CheckPunchingShear′ = “Not good”

Because the check for punching shear is not verified, the depth of the 
footing is increased. The new depth, h, is considered:

	 h := 30 in.

The following reinforcement depth is computed based on a 4.5 in. con-
crete cover:

	 d := 25.5 in.

The preceding calculations are repeated.
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Load combination 1:

	 b1:= bcol + d = 45.5·in.

	 b2:= b1

	
V : P

b b b

b
=227.8 kipu_ps1 u1

2
1 2

2

( )
= ⋅

− ⋅
⋅

	

M : M

b
12

b b
4

b
12

=42 kip ftu_ps1 u1

4
1
3

2

4= ⋅
− ⋅





⋅ ⋅

	

:
1

1+
2
3

b
b

= 0.6f
1

2

γ =
⋅

	 γv:= 1 – γf = 0.4

	 γv·Mu_ps1 = 17.074·kip·ft

Load combination 2:

	
V : P

b b b

b
=365.1 kipu_ps2 u2

2
1 2

2

( )
= ⋅

− ⋅
⋅

	

M : M

b
12

b b
4

b
12

=36 kip ftu_ps2 u2

4
1
3

2

4= ⋅
− ⋅





⋅ ⋅

	 γv·Mu_ps2 := 14.408·kip·ft

Load combination 3:

	 V : P
b b b

b
=253.4 kipu_ps3 u3

2
1 2

2

( )
= ⋅

− ⋅
⋅
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M : M

b
12

b b
4

b
12

=172.6 kip ftu_ps3 u3

4
1
3

2

4= ⋅
− ⋅





⋅ ⋅

	 γv·Mu_ps3 = 69.036·kip·ft

The depth of the concrete that resists shear is computed as

	 c :
5
2

k d = 10.2 inv = ⋅ ⋅ .

The total area of concrete resisting shear is

	 Ac := 2·(b1 + b2)cv = 1856.4·in.2

The property of the assumed critical section analogous to the polar 
moment of inertia is

	
J :

c b
6

+
c b

6
+

c b b
2

648583 inc
v 1

3
v
3

1 v 1
2

2 4= ⋅ ⋅ ⋅ ⋅ = ⋅

Load combination 1:

	
v :

V
A

+
M b

2J
130 psiu1

u_ps1

c

v u_ps1 1

c

= γ ⋅ ⋅ = ⋅

Load combination 2:

	
v :

V
A

+
M b

2J
230 psiu2

u_ps2

c

v u_ps2 1

c

= γ ⋅ ⋅ = ⋅

Load combination 3:

	
v :

V
A

+
M b

2J
166 psiu3

u_ps3

c

v u_ps3 1

c

= γ ⋅ ⋅ = ⋅

	

CheckPunchingShear :
“OK” if max v ,v ,v 4 f psi

“Not good” otherwise

u1 u2 u3 v c( )
′ =

≤ φ ⋅ ′ ⋅′ ′ ′

	 CheckPunchingShear = “OK”
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10.6 � STEP 4—DESIGN FRP REINFORCEMENT 
FOR BENDING MOMENT CAPACITY

Properties of the selected FRP reinforcement: The manufacturer’s guaran-
teed mechanical properties are

Properties of the selected FRP reinforcement

Type_of_Fiber :=
Glass
Carbon

Bar_Size ;=
#3
#4
#5
#6
#7
#8
#9
#10

ffuu = 70·ksi	 Ultimate guaranteed tensile strength of the FRP
εfuu = 0.01228	 Ultimate guaranteed rupture strain of the FRP
Ef = 5700·ksi	 Guaranteed tensile modulus of elasticity of the FRP

The geometrical properties of the selected bar are

ϕf_bar = 1.27·in.	 Bar diameter
Af_bar = 1.267·in.2	 Bar area

FRP reduction factors: Table  7-1 of ACI 440.1R-06 is used to define 
the environmental reduction factor, CE. The type of exposure has to be 
selected:

Type_of_Exposure :=
Interior
Exterior

CE = 0.7	 Environmental reduction factor for GFRP

Table 8-3 in ACI 440.1R-06 is used to define the reduction factor to take 
into account the FRP creep-rupture stress. Creep stress in the FRP has to 
be evaluated considering the total unfactored dead loads and the sustained 
portion of the live load (20% of the total live load):

kcreep = 0.2	 Creep-rupture stress limitation factor
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Crack width is checked using Equation (8-9) of ACI 440.1R-06. A crack 
width limit, wlim, of 0.020 in. is used for exterior exposure:

wlim = 0.02·in.	 Crack width limit

FRP ultimate design properties: The ultimate design properties are cal-
culated per Section 7.2 of ACI 440.1R-06:

ffu := CE·ffuu = 49·ksi	 Design tensile strength
εfu := CE·εfuu = 0.0086	 Design rupture strain

FRP creep-rupture limit stress: The FRP creep-rupture limit stress is cal-
culated per Section 8.4 of ACI 440.1R-06:

	 ff_creep := kcreep·ffu = 9.8·ksi

Minimum FRP reinforcement ratio: The minimum FRP reinforcement 
ratio, ρf,smin, to limit cracks due to shrinkage and temperature is given by 
Equation (10-1) of ACI 440.1R-06 (computed in step 3):

	 ρfsmin := ρf_ts = 0.0036

The following minimum clear concrete cover is selected:

	 cc := 2.0 in.

The effective reinforcement depth is

	 d : h c
3

2
= 26.1 inf c

f_bar= − −
⋅φ

⋅ .

As a starting point for the design, the FRP reinforcement area can be 
taken equal to 1.5 times the minimum FRP reinforcement area:

	 Af_min := (b·df)·1.5ρfsmin = 17.085·in.2

The number of FRP bars can be estimated as follows:

	
N :

A
A

13.487barEstimated
f_min

f_bar

= =

The number of bars is therefore:

	 Nbar := 14

	 Af := Nbar·Af_bar = 17.735·in.2
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The FRP reinforcement ratio is

	
:

A
b d

=0.00561 Equation (8-2) of ACI 440.1R-06f_des
f

f

ρ =
⋅

	

Check_MinReinf :
“OK” if

“Not satisfied” otherwise

f_des fsmin
=

ρ ≥ ρ

	 Check_MinReinf = “OK”

FRP bar spacing: The bar clear spacing is

	

s :

b if N = 1

b 2c N
N

otherwisef0

f_bar bar

c bar f_bar

bar
1

=

− φ

− − ⋅ φ
−

	 sf0 = 7.402·in.

The minimum required bar spacing is

	 sf_min := max(1·in,ϕf_bar) = 1.27·in.

	

Check_BarSpacing :
“OK” if s s

“Too many bars” otherwise

f0 f_min
=

≥

	 Check_BarSpacing = “OK”

The bar spacing is

	 sf1 := sf0 + ϕf_bar = 8.7·in.

Design flexural strength: The balanced reinforcement ratio, ρfb, is com-
puted per Equation (8-3) of ACI 440.1R-06:

	
: 0.85

f
f

E
E +f

= 0.01795fb 1
c

fu

f cu

f cu fu

ρ = β ⋅ ′ ⋅ ⋅ ε
⋅ ε
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Based on cross-section compatibility, the effective concrete compressive 
strain at failure can be computed as a function of the neutral axis depth, x:

	

(x):

if

d -x
x if

c

cu f fb

u

f
f fb

ε =

ε ρ ≥ ρ

ε ⋅ ρ < ρ
 

Based on cross-section compatibility, the effective tensile strain in the 
FRP reinforcement can be computed as a function of the neutral axis 
depth, x:

	
( )

ε =

ε ρ < ρ

ε ⋅ ε






ρ ≥ ρ
(x):

if

min
x

d -x , if
f

fu f fb

cu
f fu f fb

The compressive force in the concrete as a function of the neutral axis 
depth, x, is

C (x): b
2 "

(x)

1+
(x)

psi dx Compressive force in the concretec

c
c

c0

c

c0

2
0in

x

∫= .
⋅ σ ⋅ ε

ε






ε
ε







The tensile force in the FRP reinforcement as a function of the neutral 
axis depth, x, is

	 Tf(x) := Af Ef·εf(x)

The neutral axis depth, cu, can be computed by solving the equation of 
equilibrium Cc – Tf = 0:

First guess:

	 x01 := 0.1df

Given:

	 fo(x) := Cc (x) – Tf(x)

	 cu := root(fo(x01),x01)

The neutral axis depth is

	 cu = 3.314·in.
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The maximum concrete strain is: εc(cu) = 0.00124.
The maximum FRP strain is: εf(cu) = 0.0086.

The nominal bending moment capacity can be computed as follows:

	

M : b x
2 "

(x)

1+
(x)

psi dx + T c d c 1826 ft kipn

c
c

c0

c

c0

2
0

c

f u f u

u

∫ ( )( )= ⋅ ⋅
⋅ σ ⋅ ε

ε






ε
ε



















⋅ − = ⋅ ⋅

The concrete crushing failure mode is less brittle than the one due 
to FRP rupture. The ϕ-factor is calculated according to Jawahery and 
Nanni [1]:

	

:

0.65 if 1.15
c

2
0.65

0.75 if 1.15
c

2
0.75

1.15
c

2
otherwise

b

f u

fu

f u

fu

f u

fu

( )

( )

( )

φ =

−
ε

ε
≤

−
ε

ε
≥

−
ε

ε

	 ϕb = 0.65

The design flexural strength equation is computed per Equation (8-1) of 
ACI 440.1R-06:

	 ϕb·Mn = 1187·kip·ft

	
M :

1
2

max q ,q ,q b
b b

2
=390.139 kip ftu u1 u2 u3

col
2

( )= ⋅ ⋅ −





⋅ ⋅

	
Check_Flexure :

“OK” if M M

“Not good” otherwise

b n u
=

φ ⋅ ≥

	 Check_Flexure = “OK”
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Development length: The development length, ld, for straight bars can be 
calculated using Equation (11-3) of ACI 440.1R-06:

The minimum between cover to bar center and half of the center-to-
center bar spacing is

	 C : min c +
2

,
s
2

=3.635 inb2 c
f_bar f0=

φ





⋅ .

The bar location modification factor for bottom reinforcement is

	 αPos := 1

The minimum development length is computed according to ACI 440.1R-
06 Equation (11-6):

	

=
α ⋅

′ ⋅
−

φ

φ ⋅1 :

f

f psi
340

13.6+
C

=27.23 ind_min

Pos
fu

c

b2

f_bar

f_bar

The following development length is considered and is available to develop 
the required moment capacity:

	 ld = 28 in.

10.7  STEP 5—CHECK CREEP-RUPTURE STRESS

Creep-rupture stress in the FRP has to be evaluated considering the total 
unfactored dead loads and the sustained portion of the live load (20% of 
the total live load). The maximum value of the service bending moment is 
the following:

	
M :

1
2

q b
b b

2
= 337.7 kip ftsMax ave2

col
2

= ⋅ ⋅ −





⋅ ⋅

The blending moment due to total load plus 20% of live load is

	 M : M
P +0.20P

P +P
= 231 kip ftcreep sMax

D L

D L
= ⋅ ⋅ ⋅
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The ratio of modulus of elasticity of bars to modulus of elasticity of 
concrete is

	 n :
E
E

1.399f
f

c
= =

The ratio of depth of neutral axis to reinforcement depth, calculated per 
Equation (8-12), is

	
( )= ρ ⋅ ρ ⋅ − ρ ⋅k : 2 n + n n = 0.119f f_des f f_des f

2
f f

	 with ρfdes = 0.00561

The tensile stress in the FRP is

	

f :
M

A d 1
k
3

=6.2 ksifcreep
creep

f f
f

=
⋅ ⋅ −





⋅

	

Check_Creep:
“OK” if f f (f 9.8 ksi)

“Not good” otherwise

fcreep f_creep f_creep
=

≤ = ⋅

	 Check_Creep = “OK”

10.8  STEP 6—CHECK CRACK WIDTH

Crack width is checked using Equation (8-9) of ACI 440.1R-06. A crack 
width limit, wlim, of 0.020 in. is used for exterior exposure. The ratio of 
modulus of elasticity of bars to modulus of elasticity of concrete is

	 nf = 1.399

The ratio of depth of neutral axis to reinforcement depth is

	 kf = 0.119

Tensile stress in GFRP under service loads is

	
f :

M

A d 1
k
3

9.1 ksifs
sMax

f f
f

=
⋅ ⋅ −





= ⋅

with MsMax = 337.7 · kip · ft.
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The ratio of distance from neutral axis to extreme tension fiber to dis-
tance from neutral axis to center of tensile reinforcement is

	 ( )β = − ⋅
⋅ −

=:
h k d

d 1 k
1.1711

f f

f f

The thickness of concrete cover measured from extreme tension fiber to 
center of bar is

	 dc := h – df = 3.9 · in.

The bond factor (provided by the manufacturer) is

	 kb := 0.9

The crack width under service loads is

	
w: 2

f
E

kb d
s
2

0.02 in Equation (8-9) of ACI 440.1R-06fs

f
11 c

2 f1
2

= β ⋅ ⋅ + 



 = ⋅

The crack width limit for the selected exposure is

	 wlim = 0.02 · in.

	

Check_Crack1 :
“OK” if w w

“Not good” otherwise

lim
=

≤

	 Check_Crack1 = “OK”

10.9  STEP 7—RECHECK SHEAR STRENGTH

Beam (one-way) shear: The ultimate shear force is

	 Vu = 112.36 · kip

The reinforcement effective depth is

	 df = 26.1 · in.

The new nominal shear strength is

	
V : 5 f psi b k d 132 kipn c f f( )= ′ ⋅ ⋅ ⋅ ⋅



 = ⋅

but not less than
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V : 0.8 f psi b d 179 kipn_min c f( )= ′ ⋅ ⋅ ⋅ = ⋅

The ϕ-factor for shear is

	 ϕv = 0.75

=

≤ φ ×

= ⋅

φ × = ⋅













Check_Oneway_Shear :

“OK” if V V

“Not good”otherwise
V 112 kip and

V 134 kip

u V n_min

u

v n_min

	 Check_Oneway_Shear = “OK”

Punching (two-way) shear: The depth of the concrete that resists shear 
is computed as

	 c :
5
2

(k) d 10.5 invf f= ⋅ = ⋅ .

The total area of concrete resisting shear is

	 A : 2 (b +b )c 1919.4 incf 1 2 vf
2= ⋅ = ⋅

The property of the assumed critical section analogous to the polar 
moment of inertia is

	
J :=

c b
6

+
c b

6
+

c b b
2

671158 incf
vf 1

3
vf
3

1 vf 1
2

2 4⋅ ⋅ ⋅ ⋅ = ⋅

Load combinations 1, 2, and 3 are

	 vu1 = 130 psi, vu2 = 203 psi, vu3 = 166 psi

	

=
≤ φ ⋅ ′ ⋅

CheckPunchingShear :
“OK” if max(v ,v ,v ) 4 f psi

“Not good” otherwise

u1 u2 u3 cv

	 CheckPunchingShear = “OK”
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Corrosion-resistant, electromagnetic transparent and lightweight fiber-reinforced 
polymers (FRPs) are accepted as valid alternatives to steel in concrete reinforcement. 
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